| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clmopfne.t | ⊢  ·   =  (  ·sf  ‘ 𝑊 ) | 
						
							| 2 |  | clmopfne.a | ⊢  +   =  ( +𝑓 ‘ 𝑊 ) | 
						
							| 3 |  | clmlmod | ⊢ ( 𝑊  ∈  ℂMod  →  𝑊  ∈  LMod ) | 
						
							| 4 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 5 | 4 | a1i | ⊢ ( 𝑊  ∈  ℂMod  →  1  ≠  0 ) | 
						
							| 6 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 7 | 6 | clm1 | ⊢ ( 𝑊  ∈  ℂMod  →  1  =  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 8 | 6 | clm0 | ⊢ ( 𝑊  ∈  ℂMod  →  0  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 9 | 5 7 8 | 3netr3d | ⊢ ( 𝑊  ∈  ℂMod  →  ( 1r ‘ ( Scalar ‘ 𝑊 ) )  ≠  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 12 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 13 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 14 | 1 2 10 6 11 12 13 | lmodfopne | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 1r ‘ ( Scalar ‘ 𝑊 ) )  ≠  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) )  →   +   ≠   ·  ) | 
						
							| 15 | 3 9 14 | syl2anc | ⊢ ( 𝑊  ∈  ℂMod  →   +   ≠   ·  ) |