Metamath Proof Explorer


Theorem clmring

Description: The scalar ring of a subcomplex module is a ring. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypothesis clm0.f 𝐹 = ( Scalar ‘ 𝑊 )
Assertion clmring ( 𝑊 ∈ ℂMod → 𝐹 ∈ Ring )

Proof

Step Hyp Ref Expression
1 clm0.f 𝐹 = ( Scalar ‘ 𝑊 )
2 clmlmod ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod )
3 1 lmodring ( 𝑊 ∈ LMod → 𝐹 ∈ Ring )
4 2 3 syl ( 𝑊 ∈ ℂMod → 𝐹 ∈ Ring )