Metamath Proof Explorer


Theorem clmsca

Description: The ring of scalars F of a subcomplex module is the restriction of the field of complex numbers to the base set of F . (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses isclm.f 𝐹 = ( Scalar ‘ 𝑊 )
isclm.k 𝐾 = ( Base ‘ 𝐹 )
Assertion clmsca ( 𝑊 ∈ ℂMod → 𝐹 = ( ℂflds 𝐾 ) )

Proof

Step Hyp Ref Expression
1 isclm.f 𝐹 = ( Scalar ‘ 𝑊 )
2 isclm.k 𝐾 = ( Base ‘ 𝐹 )
3 1 2 isclm ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂflds 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) )
4 3 simp2bi ( 𝑊 ∈ ℂMod → 𝐹 = ( ℂflds 𝐾 ) )