Metamath Proof Explorer


Theorem clmsscn

Description: The scalar ring of a subcomplex module is a subset of the complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f 𝐹 = ( Scalar ‘ 𝑊 )
clmsub.k 𝐾 = ( Base ‘ 𝐹 )
Assertion clmsscn ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ )

Proof

Step Hyp Ref Expression
1 clm0.f 𝐹 = ( Scalar ‘ 𝑊 )
2 clmsub.k 𝐾 = ( Base ‘ 𝐹 )
3 1 2 clmsubrg ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) )
4 cnfldbas ℂ = ( Base ‘ ℂfld )
5 4 subrgss ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ )
6 3 5 syl ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ )