Metamath Proof Explorer
		
		
		
		Description:  The scalar ring of a subcomplex module is a subset of the complex
       numbers.  (Contributed by Mario Carneiro, 16-Oct-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | clm0.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
					
						|  |  | clmsub.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
				
					|  | Assertion | clmsscn | ⊢  ( 𝑊  ∈  ℂMod  →  𝐾  ⊆  ℂ ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clm0.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | clmsub.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 3 | 1 2 | clmsubrg | ⊢ ( 𝑊  ∈  ℂMod  →  𝐾  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 4 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 5 | 4 | subrgss | ⊢ ( 𝐾  ∈  ( SubRing ‘ ℂfld )  →  𝐾  ⊆  ℂ ) | 
						
							| 6 | 3 5 | syl | ⊢ ( 𝑊  ∈  ℂMod  →  𝐾  ⊆  ℂ ) |