| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clm0.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | clmsub.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 3 | 1 2 | clmsubrg | ⊢ ( 𝑊  ∈  ℂMod  →  𝐾  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 4 |  | subrgsubg | ⊢ ( 𝐾  ∈  ( SubRing ‘ ℂfld )  →  𝐾  ∈  ( SubGrp ‘ ℂfld ) ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑊  ∈  ℂMod  →  𝐾  ∈  ( SubGrp ‘ ℂfld ) ) | 
						
							| 6 |  | cnfldsub | ⊢  −   =  ( -g ‘ ℂfld ) | 
						
							| 7 |  | eqid | ⊢ ( ℂfld  ↾s  𝐾 )  =  ( ℂfld  ↾s  𝐾 ) | 
						
							| 8 |  | eqid | ⊢ ( -g ‘ ( ℂfld  ↾s  𝐾 ) )  =  ( -g ‘ ( ℂfld  ↾s  𝐾 ) ) | 
						
							| 9 | 6 7 8 | subgsub | ⊢ ( ( 𝐾  ∈  ( SubGrp ‘ ℂfld )  ∧  𝐴  ∈  𝐾  ∧  𝐵  ∈  𝐾 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐴 ( -g ‘ ( ℂfld  ↾s  𝐾 ) ) 𝐵 ) ) | 
						
							| 10 | 5 9 | syl3an1 | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝐴  ∈  𝐾  ∧  𝐵  ∈  𝐾 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐴 ( -g ‘ ( ℂfld  ↾s  𝐾 ) ) 𝐵 ) ) | 
						
							| 11 | 1 2 | clmsca | ⊢ ( 𝑊  ∈  ℂMod  →  𝐹  =  ( ℂfld  ↾s  𝐾 ) ) | 
						
							| 12 | 11 | fveq2d | ⊢ ( 𝑊  ∈  ℂMod  →  ( -g ‘ 𝐹 )  =  ( -g ‘ ( ℂfld  ↾s  𝐾 ) ) ) | 
						
							| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝐴  ∈  𝐾  ∧  𝐵  ∈  𝐾 )  →  ( -g ‘ 𝐹 )  =  ( -g ‘ ( ℂfld  ↾s  𝐾 ) ) ) | 
						
							| 14 | 13 | oveqd | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝐴  ∈  𝐾  ∧  𝐵  ∈  𝐾 )  →  ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 )  =  ( 𝐴 ( -g ‘ ( ℂfld  ↾s  𝐾 ) ) 𝐵 ) ) | 
						
							| 15 | 10 14 | eqtr4d | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝐴  ∈  𝐾  ∧  𝐵  ∈  𝐾 )  →  ( 𝐴  −  𝐵 )  =  ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) ) |