Step |
Hyp |
Ref |
Expression |
1 |
|
clm0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
clmsub.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
1 2
|
clmsubrg |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
4 |
|
subrgsubg |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) |
5 |
3 4
|
syl |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) |
6 |
|
cnfldsub |
⊢ − = ( -g ‘ ℂfld ) |
7 |
|
eqid |
⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) |
8 |
|
eqid |
⊢ ( -g ‘ ( ℂfld ↾s 𝐾 ) ) = ( -g ‘ ( ℂfld ↾s 𝐾 ) ) |
9 |
6 7 8
|
subgsub |
⊢ ( ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 ( -g ‘ ( ℂfld ↾s 𝐾 ) ) 𝐵 ) ) |
10 |
5 9
|
syl3an1 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 ( -g ‘ ( ℂfld ↾s 𝐾 ) ) 𝐵 ) ) |
11 |
1 2
|
clmsca |
⊢ ( 𝑊 ∈ ℂMod → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
12 |
11
|
fveq2d |
⊢ ( 𝑊 ∈ ℂMod → ( -g ‘ 𝐹 ) = ( -g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( -g ‘ 𝐹 ) = ( -g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
14 |
13
|
oveqd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 𝐴 ( -g ‘ ( ℂfld ↾s 𝐾 ) ) 𝐵 ) ) |
15 |
10 14
|
eqtr4d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) ) |