Step |
Hyp |
Ref |
Expression |
1 |
|
clmpm1dir.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
clmpm1dir.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
3 |
|
clmpm1dir.a |
⊢ + = ( +g ‘ 𝑊 ) |
4 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝑊 ∈ ℂMod ) |
5 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
7 |
5 6
|
clmneg1 |
⊢ ( 𝑊 ∈ ℂMod → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
9 |
|
simpl |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → 𝐶 ∈ 𝑉 ) |
10 |
9
|
adantl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) |
11 |
|
simpr |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → 𝐷 ∈ 𝑉 ) |
12 |
11
|
adantl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐷 ∈ 𝑉 ) |
13 |
1 5 2 6 3
|
clmvsdi |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( - 1 · ( 𝐶 + 𝐷 ) ) = ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) |
14 |
4 8 10 12 13
|
syl13anc |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( - 1 · ( 𝐶 + 𝐷 ) ) = ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) |
15 |
14
|
3adant2 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( - 1 · ( 𝐶 + 𝐷 ) ) = ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) |
16 |
15
|
oveq2d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) + ( - 1 · ( 𝐶 + 𝐷 ) ) ) = ( ( 𝐴 + 𝐵 ) + ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) ) |
17 |
|
clmabl |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ Abel ) |
18 |
|
ablcmn |
⊢ ( 𝑊 ∈ Abel → 𝑊 ∈ CMnd ) |
19 |
17 18
|
syl |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ CMnd ) |
20 |
19
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝑊 ∈ CMnd ) |
21 |
|
simp2 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
22 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) |
23 |
7
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉 ) → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
24 |
|
simpr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ 𝑉 ) |
25 |
1 5 2 6
|
clmvscl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐶 ∈ 𝑉 ) → ( - 1 · 𝐶 ) ∈ 𝑉 ) |
26 |
22 23 24 25
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉 ) → ( - 1 · 𝐶 ) ∈ 𝑉 ) |
27 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) |
28 |
7
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉 ) → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
29 |
|
simpr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉 ) → 𝐷 ∈ 𝑉 ) |
30 |
1 5 2 6
|
clmvscl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐷 ∈ 𝑉 ) → ( - 1 · 𝐷 ) ∈ 𝑉 ) |
31 |
27 28 29 30
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉 ) → ( - 1 · 𝐷 ) ∈ 𝑉 ) |
32 |
26 31
|
anim12dan |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( - 1 · 𝐶 ) ∈ 𝑉 ∧ ( - 1 · 𝐷 ) ∈ 𝑉 ) ) |
33 |
32
|
3adant2 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( - 1 · 𝐶 ) ∈ 𝑉 ∧ ( - 1 · 𝐷 ) ∈ 𝑉 ) ) |
34 |
1 3
|
cmn4 |
⊢ ( ( 𝑊 ∈ CMnd ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( - 1 · 𝐶 ) ∈ 𝑉 ∧ ( - 1 · 𝐷 ) ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) + ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) = ( ( 𝐴 + ( - 1 · 𝐶 ) ) + ( 𝐵 + ( - 1 · 𝐷 ) ) ) ) |
35 |
20 21 33 34
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) + ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) = ( ( 𝐴 + ( - 1 · 𝐶 ) ) + ( 𝐵 + ( - 1 · 𝐷 ) ) ) ) |
36 |
16 35
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) + ( - 1 · ( 𝐶 + 𝐷 ) ) ) = ( ( 𝐴 + ( - 1 · 𝐶 ) ) + ( 𝐵 + ( - 1 · 𝐷 ) ) ) ) |