| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmpm1dir.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
clmpm1dir.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 3 |
|
clmpm1dir.a |
⊢ + = ( +g ‘ 𝑊 ) |
| 4 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝑊 ∈ ℂMod ) |
| 5 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 7 |
5 6
|
clmneg1 |
⊢ ( 𝑊 ∈ ℂMod → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 9 |
|
simpl |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → 𝐶 ∈ 𝑉 ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) |
| 11 |
|
simpr |
⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → 𝐷 ∈ 𝑉 ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐷 ∈ 𝑉 ) |
| 13 |
1 5 2 6 3
|
clmvsdi |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( - 1 · ( 𝐶 + 𝐷 ) ) = ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) |
| 14 |
4 8 10 12 13
|
syl13anc |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( - 1 · ( 𝐶 + 𝐷 ) ) = ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) |
| 15 |
14
|
3adant2 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( - 1 · ( 𝐶 + 𝐷 ) ) = ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) |
| 16 |
15
|
oveq2d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) + ( - 1 · ( 𝐶 + 𝐷 ) ) ) = ( ( 𝐴 + 𝐵 ) + ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) ) |
| 17 |
|
clmabl |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ Abel ) |
| 18 |
|
ablcmn |
⊢ ( 𝑊 ∈ Abel → 𝑊 ∈ CMnd ) |
| 19 |
17 18
|
syl |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ CMnd ) |
| 20 |
19
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝑊 ∈ CMnd ) |
| 21 |
|
simp2 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
| 22 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) |
| 23 |
7
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉 ) → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 24 |
|
simpr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ 𝑉 ) |
| 25 |
1 5 2 6
|
clmvscl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐶 ∈ 𝑉 ) → ( - 1 · 𝐶 ) ∈ 𝑉 ) |
| 26 |
22 23 24 25
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉 ) → ( - 1 · 𝐶 ) ∈ 𝑉 ) |
| 27 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) |
| 28 |
7
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉 ) → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 29 |
|
simpr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉 ) → 𝐷 ∈ 𝑉 ) |
| 30 |
1 5 2 6
|
clmvscl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐷 ∈ 𝑉 ) → ( - 1 · 𝐷 ) ∈ 𝑉 ) |
| 31 |
27 28 29 30
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉 ) → ( - 1 · 𝐷 ) ∈ 𝑉 ) |
| 32 |
26 31
|
anim12dan |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( - 1 · 𝐶 ) ∈ 𝑉 ∧ ( - 1 · 𝐷 ) ∈ 𝑉 ) ) |
| 33 |
32
|
3adant2 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( - 1 · 𝐶 ) ∈ 𝑉 ∧ ( - 1 · 𝐷 ) ∈ 𝑉 ) ) |
| 34 |
1 3
|
cmn4 |
⊢ ( ( 𝑊 ∈ CMnd ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( - 1 · 𝐶 ) ∈ 𝑉 ∧ ( - 1 · 𝐷 ) ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) + ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) = ( ( 𝐴 + ( - 1 · 𝐶 ) ) + ( 𝐵 + ( - 1 · 𝐷 ) ) ) ) |
| 35 |
20 21 33 34
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) + ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) = ( ( 𝐴 + ( - 1 · 𝐶 ) ) + ( 𝐵 + ( - 1 · 𝐷 ) ) ) ) |
| 36 |
16 35
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) + ( - 1 · ( 𝐶 + 𝐷 ) ) ) = ( ( 𝐴 + ( - 1 · 𝐶 ) ) + ( 𝐵 + ( - 1 · 𝐷 ) ) ) ) |