Metamath Proof Explorer


Theorem clmsubcl

Description: Closure of ring subtraction for a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clm0.f 𝐹 = ( Scalar ‘ 𝑊 )
clmsub.k 𝐾 = ( Base ‘ 𝐹 )
Assertion clmsubcl ( ( 𝑊 ∈ ℂMod ∧ 𝑋𝐾𝑌𝐾 ) → ( 𝑋𝑌 ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 clm0.f 𝐹 = ( Scalar ‘ 𝑊 )
2 clmsub.k 𝐾 = ( Base ‘ 𝐹 )
3 1 2 clmsubrg ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) )
4 subrgsubg ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ∈ ( SubGrp ‘ ℂfld ) )
5 3 4 syl ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubGrp ‘ ℂfld ) )
6 cnfldsub − = ( -g ‘ ℂfld )
7 6 subgsubcl ( ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝑋𝐾𝑌𝐾 ) → ( 𝑋𝑌 ) ∈ 𝐾 )
8 5 7 syl3an1 ( ( 𝑊 ∈ ℂMod ∧ 𝑋𝐾𝑌𝐾 ) → ( 𝑋𝑌 ) ∈ 𝐾 )