Metamath Proof Explorer


Theorem clmsubdir

Description: Scalar multiplication distributive law for subtraction. ( lmodsubdir analog.) (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clmsubdir.v 𝑉 = ( Base ‘ 𝑊 )
clmsubdir.t · = ( ·𝑠𝑊 )
clmsubdir.f 𝐹 = ( Scalar ‘ 𝑊 )
clmsubdir.k 𝐾 = ( Base ‘ 𝐹 )
clmsubdir.m = ( -g𝑊 )
clmsubdir.w ( 𝜑𝑊 ∈ ℂMod )
clmsubdir.a ( 𝜑𝐴𝐾 )
clmsubdir.b ( 𝜑𝐵𝐾 )
clmsubdir.x ( 𝜑𝑋𝑉 )
Assertion clmsubdir ( 𝜑 → ( ( 𝐴𝐵 ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) ( 𝐵 · 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 clmsubdir.v 𝑉 = ( Base ‘ 𝑊 )
2 clmsubdir.t · = ( ·𝑠𝑊 )
3 clmsubdir.f 𝐹 = ( Scalar ‘ 𝑊 )
4 clmsubdir.k 𝐾 = ( Base ‘ 𝐹 )
5 clmsubdir.m = ( -g𝑊 )
6 clmsubdir.w ( 𝜑𝑊 ∈ ℂMod )
7 clmsubdir.a ( 𝜑𝐴𝐾 )
8 clmsubdir.b ( 𝜑𝐵𝐾 )
9 clmsubdir.x ( 𝜑𝑋𝑉 )
10 3 4 clmsub ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝐾𝐵𝐾 ) → ( 𝐴𝐵 ) = ( 𝐴 ( -g𝐹 ) 𝐵 ) )
11 6 7 8 10 syl3anc ( 𝜑 → ( 𝐴𝐵 ) = ( 𝐴 ( -g𝐹 ) 𝐵 ) )
12 11 oveq1d ( 𝜑 → ( ( 𝐴𝐵 ) · 𝑋 ) = ( ( 𝐴 ( -g𝐹 ) 𝐵 ) · 𝑋 ) )
13 eqid ( -g𝐹 ) = ( -g𝐹 )
14 clmlmod ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod )
15 6 14 syl ( 𝜑𝑊 ∈ LMod )
16 1 2 3 4 5 13 15 7 8 9 lmodsubdir ( 𝜑 → ( ( 𝐴 ( -g𝐹 ) 𝐵 ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) ( 𝐵 · 𝑋 ) ) )
17 12 16 eqtrd ( 𝜑 → ( ( 𝐴𝐵 ) · 𝑋 ) = ( ( 𝐴 · 𝑋 ) ( 𝐵 · 𝑋 ) ) )