Metamath Proof Explorer


Theorem clmsubrg

Description: The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses isclm.f 𝐹 = ( Scalar ‘ 𝑊 )
isclm.k 𝐾 = ( Base ‘ 𝐹 )
Assertion clmsubrg ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) )

Proof

Step Hyp Ref Expression
1 isclm.f 𝐹 = ( Scalar ‘ 𝑊 )
2 isclm.k 𝐾 = ( Base ‘ 𝐹 )
3 1 2 isclm ( 𝑊 ∈ ℂMod ↔ ( 𝑊 ∈ LMod ∧ 𝐹 = ( ℂflds 𝐾 ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) )
4 3 simp3bi ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) )