| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clmvs1.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | clmvs1.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 | 3 | clm1 | ⊢ ( 𝑊  ∈  ℂMod  →  1  =  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝑋  ∈  𝑉 )  →  1  =  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 6 | 5 | oveq1d | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝑋  ∈  𝑉 )  →  ( 1  ·  𝑋 )  =  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) )  ·  𝑋 ) ) | 
						
							| 7 |  | clmlmod | ⊢ ( 𝑊  ∈  ℂMod  →  𝑊  ∈  LMod ) | 
						
							| 8 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 9 | 1 3 2 8 | lmodvs1 | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑋  ∈  𝑉 )  →  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) )  ·  𝑋 )  =  𝑋 ) | 
						
							| 10 | 7 9 | sylan | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝑋  ∈  𝑉 )  →  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) )  ·  𝑋 )  =  𝑋 ) | 
						
							| 11 | 6 10 | eqtrd | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝑋  ∈  𝑉 )  →  ( 1  ·  𝑋 )  =  𝑋 ) |