Step |
Hyp |
Ref |
Expression |
1 |
|
clmvs1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
clmvs1.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
4 |
3
|
clm1 |
⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → 1 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
6 |
5
|
oveq1d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) · 𝑋 ) ) |
7 |
|
clmlmod |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) |
8 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
9 |
1 3 2 8
|
lmodvs1 |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) · 𝑋 ) = 𝑋 ) |
10 |
7 9
|
sylan |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) · 𝑋 ) = 𝑋 ) |
11 |
6 10
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = 𝑋 ) |