Step |
Hyp |
Ref |
Expression |
1 |
|
clmvs1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
clmvs1.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
3 |
|
clmvs2.a |
⊢ + = ( +g ‘ 𝑊 ) |
4 |
|
df-2 |
⊢ 2 = ( 1 + 1 ) |
5 |
4
|
oveq1i |
⊢ ( 2 · 𝐴 ) = ( ( 1 + 1 ) · 𝐴 ) |
6 |
5
|
a1i |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( 2 · 𝐴 ) = ( ( 1 + 1 ) · 𝐴 ) ) |
7 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) |
8 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
9 |
8
|
clm1 |
⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
10 |
|
clmlmod |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) |
11 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
12 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
13 |
8 11 12
|
lmod1cl |
⊢ ( 𝑊 ∈ LMod → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
14 |
10 13
|
syl |
⊢ ( 𝑊 ∈ ℂMod → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
15 |
9 14
|
eqeltrd |
⊢ ( 𝑊 ∈ ℂMod → 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
17 |
|
simpr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
18 |
1 8 2 11 3
|
clmvsdir |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴 ∈ 𝑉 ) ) → ( ( 1 + 1 ) · 𝐴 ) = ( ( 1 · 𝐴 ) + ( 1 · 𝐴 ) ) ) |
19 |
7 16 16 17 18
|
syl13anc |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( ( 1 + 1 ) · 𝐴 ) = ( ( 1 · 𝐴 ) + ( 1 · 𝐴 ) ) ) |
20 |
1 2
|
clmvs1 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( 1 · 𝐴 ) = 𝐴 ) |
21 |
20 20
|
oveq12d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( ( 1 · 𝐴 ) + ( 1 · 𝐴 ) ) = ( 𝐴 + 𝐴 ) ) |
22 |
6 19 21
|
3eqtrrd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 + 𝐴 ) = ( 2 · 𝐴 ) ) |