Metamath Proof Explorer
Description: Closure of scalar product for a subcomplex module. Analogue of
lmodvscl . (Contributed by NM, 3-Nov-2006) (Revised by AV, 28-Sep-2021)
|
|
Ref |
Expression |
|
Hypotheses |
clmvscl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
|
|
clmvscl.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
|
|
clmvscl.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
|
|
clmvscl.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
|
Assertion |
clmvscl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑄 · 𝑋 ) ∈ 𝑉 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
clmvscl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
clmvscl.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
clmvscl.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
4 |
|
clmvscl.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
clmlmod |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) |
6 |
1 2 3 4
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑄 · 𝑋 ) ∈ 𝑉 ) |
7 |
5 6
|
syl3an1 |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑄 · 𝑋 ) ∈ 𝑉 ) |