Metamath Proof Explorer
		
		
		
		Description:  Closure of scalar product for a subcomplex module.  Analogue of
       lmodvscl .  (Contributed by NM, 3-Nov-2006)  (Revised by AV, 28-Sep-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | clmvscl.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
					
						|  |  | clmvscl.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
					
						|  |  | clmvscl.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
					
						|  |  | clmvscl.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
				
					|  | Assertion | clmvscl | ⊢  ( ( 𝑊  ∈  ℂMod  ∧  𝑄  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( 𝑄  ·  𝑋 )  ∈  𝑉 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clmvscl.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | clmvscl.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | clmvscl.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | clmvscl.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 5 |  | clmlmod | ⊢ ( 𝑊  ∈  ℂMod  →  𝑊  ∈  LMod ) | 
						
							| 6 | 1 2 3 4 | lmodvscl | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑄  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( 𝑄  ·  𝑋 )  ∈  𝑉 ) | 
						
							| 7 | 5 6 | syl3an1 | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  𝑄  ∈  𝐾  ∧  𝑋  ∈  𝑉 )  →  ( 𝑄  ·  𝑋 )  ∈  𝑉 ) |