Metamath Proof Explorer


Theorem clmvscom

Description: Commutative law for the scalar product. (Contributed by NM, 14-Feb-2008) (Revised by AV, 7-Oct-2021)

Ref Expression
Hypotheses clmvscl.v 𝑉 = ( Base ‘ 𝑊 )
clmvscl.f 𝐹 = ( Scalar ‘ 𝑊 )
clmvscl.s · = ( ·𝑠𝑊 )
clmvscl.k 𝐾 = ( Base ‘ 𝐹 )
Assertion clmvscom ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( 𝑄 · ( 𝑅 · 𝑋 ) ) = ( 𝑅 · ( 𝑄 · 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 clmvscl.v 𝑉 = ( Base ‘ 𝑊 )
2 clmvscl.f 𝐹 = ( Scalar ‘ 𝑊 )
3 clmvscl.s · = ( ·𝑠𝑊 )
4 clmvscl.k 𝐾 = ( Base ‘ 𝐹 )
5 ssel ( 𝐾 ⊆ ℂ → ( 𝑄𝐾𝑄 ∈ ℂ ) )
6 ssel ( 𝐾 ⊆ ℂ → ( 𝑅𝐾𝑅 ∈ ℂ ) )
7 5 6 anim12d ( 𝐾 ⊆ ℂ → ( ( 𝑄𝐾𝑅𝐾 ) → ( 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) )
8 2 4 clmsscn ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ )
9 7 8 syl11 ( ( 𝑄𝐾𝑅𝐾 ) → ( 𝑊 ∈ ℂMod → ( 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) )
10 9 3adant3 ( ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) → ( 𝑊 ∈ ℂMod → ( 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) )
11 10 impcom ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) )
12 mulcom ( ( 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( 𝑄 · 𝑅 ) = ( 𝑅 · 𝑄 ) )
13 11 12 syl ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( 𝑄 · 𝑅 ) = ( 𝑅 · 𝑄 ) )
14 13 oveq1d ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( ( 𝑄 · 𝑅 ) · 𝑋 ) = ( ( 𝑅 · 𝑄 ) · 𝑋 ) )
15 1 2 3 4 clmvsass ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( ( 𝑄 · 𝑅 ) · 𝑋 ) = ( 𝑄 · ( 𝑅 · 𝑋 ) ) )
16 3ancoma ( ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ↔ ( 𝑅𝐾𝑄𝐾𝑋𝑉 ) )
17 1 2 3 4 clmvsass ( ( 𝑊 ∈ ℂMod ∧ ( 𝑅𝐾𝑄𝐾𝑋𝑉 ) ) → ( ( 𝑅 · 𝑄 ) · 𝑋 ) = ( 𝑅 · ( 𝑄 · 𝑋 ) ) )
18 16 17 sylan2b ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( ( 𝑅 · 𝑄 ) · 𝑋 ) = ( 𝑅 · ( 𝑄 · 𝑋 ) ) )
19 14 15 18 3eqtr3d ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄𝐾𝑅𝐾𝑋𝑉 ) ) → ( 𝑄 · ( 𝑅 · 𝑋 ) ) = ( 𝑅 · ( 𝑄 · 𝑋 ) ) )