| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clmvscl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
clmvscl.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
clmvscl.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
clmvscl.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 5 |
|
ssel |
⊢ ( 𝐾 ⊆ ℂ → ( 𝑄 ∈ 𝐾 → 𝑄 ∈ ℂ ) ) |
| 6 |
|
ssel |
⊢ ( 𝐾 ⊆ ℂ → ( 𝑅 ∈ 𝐾 → 𝑅 ∈ ℂ ) ) |
| 7 |
5 6
|
anim12d |
⊢ ( 𝐾 ⊆ ℂ → ( ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) → ( 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) ) |
| 8 |
2 4
|
clmsscn |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
| 9 |
7 8
|
syl11 |
⊢ ( ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) → ( 𝑊 ∈ ℂMod → ( 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) ) |
| 10 |
9
|
3adant3 |
⊢ ( ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑊 ∈ ℂMod → ( 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) ) |
| 11 |
10
|
impcom |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) ) |
| 12 |
|
mulcom |
⊢ ( ( 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ ) → ( 𝑄 · 𝑅 ) = ( 𝑅 · 𝑄 ) ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑄 · 𝑅 ) = ( 𝑅 · 𝑄 ) ) |
| 14 |
13
|
oveq1d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 · 𝑅 ) · 𝑋 ) = ( ( 𝑅 · 𝑄 ) · 𝑋 ) ) |
| 15 |
1 2 3 4
|
clmvsass |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 · 𝑅 ) · 𝑋 ) = ( 𝑄 · ( 𝑅 · 𝑋 ) ) ) |
| 16 |
|
3ancoma |
⊢ ( ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ↔ ( 𝑅 ∈ 𝐾 ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) |
| 17 |
1 2 3 4
|
clmvsass |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑅 ∈ 𝐾 ∧ 𝑄 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑅 · 𝑄 ) · 𝑋 ) = ( 𝑅 · ( 𝑄 · 𝑋 ) ) ) |
| 18 |
16 17
|
sylan2b |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑅 · 𝑄 ) · 𝑋 ) = ( 𝑅 · ( 𝑄 · 𝑋 ) ) ) |
| 19 |
14 15 18
|
3eqtr3d |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( 𝑄 · ( 𝑅 · 𝑋 ) ) = ( 𝑅 · ( 𝑄 · 𝑋 ) ) ) |