Database
BASIC TOPOLOGY
Metric subcomplex vector spaces
Subcomplex modules
clmvsdi
Metamath Proof Explorer
Description: Distributive law for scalar product (left-distributivity). ( lmodvsdi analog.) (Contributed by NM , 3-Nov-2006) (Revised by AV , 28-Sep-2021)
Ref
Expression
Hypotheses
clmvscl.v
⊢ 𝑉 = ( Base ‘ 𝑊 )
clmvscl.f
⊢ 𝐹 = ( Scalar ‘ 𝑊 )
clmvscl.s
⊢ · = ( · 𝑠 ‘ 𝑊 )
clmvscl.k
⊢ 𝐾 = ( Base ‘ 𝐹 )
clmvsdir.a
⊢ + = ( +g ‘ 𝑊 )
Assertion
clmvsdi
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐴 · ( 𝑋 + 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) + ( 𝐴 · 𝑌 ) ) )
Proof
Step
Hyp
Ref
Expression
1
clmvscl.v
⊢ 𝑉 = ( Base ‘ 𝑊 )
2
clmvscl.f
⊢ 𝐹 = ( Scalar ‘ 𝑊 )
3
clmvscl.s
⊢ · = ( · 𝑠 ‘ 𝑊 )
4
clmvscl.k
⊢ 𝐾 = ( Base ‘ 𝐹 )
5
clmvsdir.a
⊢ + = ( +g ‘ 𝑊 )
6
clmlmod
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod )
7
1 5 2 3 4
lmodvsdi
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐴 · ( 𝑋 + 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) + ( 𝐴 · 𝑌 ) ) )
8
6 7
sylan
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐴 · ( 𝑋 + 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) + ( 𝐴 · 𝑌 ) ) )