Step |
Hyp |
Ref |
Expression |
1 |
|
clmvscl.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
clmvscl.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
clmvscl.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
4 |
|
clmvscl.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
5 |
|
clmvsdir.a |
⊢ + = ( +g ‘ 𝑊 ) |
6 |
2
|
clmadd |
⊢ ( 𝑊 ∈ ℂMod → + = ( +g ‘ 𝐹 ) ) |
7 |
6
|
oveqd |
⊢ ( 𝑊 ∈ ℂMod → ( 𝑄 + 𝑅 ) = ( 𝑄 ( +g ‘ 𝐹 ) 𝑅 ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝑊 ∈ ℂMod → ( ( 𝑄 + 𝑅 ) · 𝑋 ) = ( ( 𝑄 ( +g ‘ 𝐹 ) 𝑅 ) · 𝑋 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 + 𝑅 ) · 𝑋 ) = ( ( 𝑄 ( +g ‘ 𝐹 ) 𝑅 ) · 𝑋 ) ) |
10 |
|
clmlmod |
⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) |
11 |
|
eqid |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) |
12 |
1 5 2 3 4 11
|
lmodvsdir |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 ( +g ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) |
13 |
10 12
|
sylan |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 ( +g ‘ 𝐹 ) 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) |
14 |
9 13
|
eqtrd |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( 𝑄 + 𝑅 ) · 𝑋 ) = ( ( 𝑄 · 𝑋 ) + ( 𝑅 · 𝑋 ) ) ) |