| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clmvscl.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | clmvscl.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | clmvscl.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | clmvscl.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 5 |  | clmvsdir.a | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 6 | 2 | clmadd | ⊢ ( 𝑊  ∈  ℂMod  →   +   =  ( +g ‘ 𝐹 ) ) | 
						
							| 7 | 6 | oveqd | ⊢ ( 𝑊  ∈  ℂMod  →  ( 𝑄  +  𝑅 )  =  ( 𝑄 ( +g ‘ 𝐹 ) 𝑅 ) ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( 𝑊  ∈  ℂMod  →  ( ( 𝑄  +  𝑅 )  ·  𝑋 )  =  ( ( 𝑄 ( +g ‘ 𝐹 ) 𝑅 )  ·  𝑋 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝑄  +  𝑅 )  ·  𝑋 )  =  ( ( 𝑄 ( +g ‘ 𝐹 ) 𝑅 )  ·  𝑋 ) ) | 
						
							| 10 |  | clmlmod | ⊢ ( 𝑊  ∈  ℂMod  →  𝑊  ∈  LMod ) | 
						
							| 11 |  | eqid | ⊢ ( +g ‘ 𝐹 )  =  ( +g ‘ 𝐹 ) | 
						
							| 12 | 1 5 2 3 4 11 | lmodvsdir | ⊢ ( ( 𝑊  ∈  LMod  ∧  ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝑄 ( +g ‘ 𝐹 ) 𝑅 )  ·  𝑋 )  =  ( ( 𝑄  ·  𝑋 )  +  ( 𝑅  ·  𝑋 ) ) ) | 
						
							| 13 | 10 12 | sylan | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝑄 ( +g ‘ 𝐹 ) 𝑅 )  ·  𝑋 )  =  ( ( 𝑄  ·  𝑋 )  +  ( 𝑅  ·  𝑋 ) ) ) | 
						
							| 14 | 9 13 | eqtrd | ⊢ ( ( 𝑊  ∈  ℂMod  ∧  ( 𝑄  ∈  𝐾  ∧  𝑅  ∈  𝐾  ∧  𝑋  ∈  𝑉 ) )  →  ( ( 𝑄  +  𝑅 )  ·  𝑋 )  =  ( ( 𝑄  ·  𝑋 )  +  ( 𝑅  ·  𝑋 ) ) ) |