Metamath Proof Explorer


Theorem clmvsneg

Description: Multiplication of a vector by a negated scalar. ( lmodvsneg analog.) (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses clmvsneg.b 𝐵 = ( Base ‘ 𝑊 )
clmvsneg.f 𝐹 = ( Scalar ‘ 𝑊 )
clmvsneg.s · = ( ·𝑠𝑊 )
clmvsneg.n 𝑁 = ( invg𝑊 )
clmvsneg.k 𝐾 = ( Base ‘ 𝐹 )
clmvsneg.w ( 𝜑𝑊 ∈ ℂMod )
clmvsneg.x ( 𝜑𝑋𝐵 )
clmvsneg.r ( 𝜑𝑅𝐾 )
Assertion clmvsneg ( 𝜑 → ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) = ( - 𝑅 · 𝑋 ) )

Proof

Step Hyp Ref Expression
1 clmvsneg.b 𝐵 = ( Base ‘ 𝑊 )
2 clmvsneg.f 𝐹 = ( Scalar ‘ 𝑊 )
3 clmvsneg.s · = ( ·𝑠𝑊 )
4 clmvsneg.n 𝑁 = ( invg𝑊 )
5 clmvsneg.k 𝐾 = ( Base ‘ 𝐹 )
6 clmvsneg.w ( 𝜑𝑊 ∈ ℂMod )
7 clmvsneg.x ( 𝜑𝑋𝐵 )
8 clmvsneg.r ( 𝜑𝑅𝐾 )
9 eqid ( invg𝐹 ) = ( invg𝐹 )
10 clmlmod ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod )
11 6 10 syl ( 𝜑𝑊 ∈ LMod )
12 1 2 3 4 5 9 11 7 8 lmodvsneg ( 𝜑 → ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) = ( ( ( invg𝐹 ) ‘ 𝑅 ) · 𝑋 ) )
13 2 5 clmneg ( ( 𝑊 ∈ ℂMod ∧ 𝑅𝐾 ) → - 𝑅 = ( ( invg𝐹 ) ‘ 𝑅 ) )
14 6 8 13 syl2anc ( 𝜑 → - 𝑅 = ( ( invg𝐹 ) ‘ 𝑅 ) )
15 14 oveq1d ( 𝜑 → ( - 𝑅 · 𝑋 ) = ( ( ( invg𝐹 ) ‘ 𝑅 ) · 𝑋 ) )
16 12 15 eqtr4d ( 𝜑 → ( 𝑁 ‘ ( 𝑅 · 𝑋 ) ) = ( - 𝑅 · 𝑋 ) )