Metamath Proof Explorer


Theorem clmvsrinv

Description: A vector minus itself. (Contributed by NM, 4-Dec-2006) (Revised by AV, 28-Sep-2021)

Ref Expression
Hypotheses clmpm1dir.v 𝑉 = ( Base ‘ 𝑊 )
clmpm1dir.s · = ( ·𝑠𝑊 )
clmpm1dir.a + = ( +g𝑊 )
clmvsrinv.0 0 = ( 0g𝑊 )
Assertion clmvsrinv ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉 ) → ( 𝐴 + ( - 1 · 𝐴 ) ) = 0 )

Proof

Step Hyp Ref Expression
1 clmpm1dir.v 𝑉 = ( Base ‘ 𝑊 )
2 clmpm1dir.s · = ( ·𝑠𝑊 )
3 clmpm1dir.a + = ( +g𝑊 )
4 clmvsrinv.0 0 = ( 0g𝑊 )
5 eqid ( invg𝑊 ) = ( invg𝑊 )
6 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
7 1 5 6 2 clmvneg1 ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉 ) → ( - 1 · 𝐴 ) = ( ( invg𝑊 ) ‘ 𝐴 ) )
8 7 oveq2d ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉 ) → ( 𝐴 + ( - 1 · 𝐴 ) ) = ( 𝐴 + ( ( invg𝑊 ) ‘ 𝐴 ) ) )
9 clmgrp ( 𝑊 ∈ ℂMod → 𝑊 ∈ Grp )
10 1 3 4 5 grprinv ( ( 𝑊 ∈ Grp ∧ 𝐴𝑉 ) → ( 𝐴 + ( ( invg𝑊 ) ‘ 𝐴 ) ) = 0 )
11 9 10 sylan ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉 ) → ( 𝐴 + ( ( invg𝑊 ) ‘ 𝐴 ) ) = 0 )
12 8 11 eqtrd ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉 ) → ( 𝐴 + ( - 1 · 𝐴 ) ) = 0 )