Metamath Proof Explorer


Theorem clmvz

Description: Two ways to express the negative of a vector. (Contributed by NM, 29-Feb-2008) (Revised by AV, 7-Oct-2021)

Ref Expression
Hypotheses clmvz.v 𝑉 = ( Base ‘ 𝑊 )
clmvz.m = ( -g𝑊 )
clmvz.s · = ( ·𝑠𝑊 )
clmvz.0 0 = ( 0g𝑊 )
Assertion clmvz ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉 ) → ( 0 𝐴 ) = ( - 1 · 𝐴 ) )

Proof

Step Hyp Ref Expression
1 clmvz.v 𝑉 = ( Base ‘ 𝑊 )
2 clmvz.m = ( -g𝑊 )
3 clmvz.s · = ( ·𝑠𝑊 )
4 clmvz.0 0 = ( 0g𝑊 )
5 simpl ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉 ) → 𝑊 ∈ ℂMod )
6 clmgrp ( 𝑊 ∈ ℂMod → 𝑊 ∈ Grp )
7 1 4 grpidcl ( 𝑊 ∈ Grp → 0𝑉 )
8 6 7 syl ( 𝑊 ∈ ℂMod → 0𝑉 )
9 8 adantr ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉 ) → 0𝑉 )
10 simpr ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉 ) → 𝐴𝑉 )
11 eqid ( +g𝑊 ) = ( +g𝑊 )
12 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
13 1 11 2 12 3 clmvsubval2 ( ( 𝑊 ∈ ℂMod ∧ 0𝑉𝐴𝑉 ) → ( 0 𝐴 ) = ( ( - 1 · 𝐴 ) ( +g𝑊 ) 0 ) )
14 5 9 10 13 syl3anc ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉 ) → ( 0 𝐴 ) = ( ( - 1 · 𝐴 ) ( +g𝑊 ) 0 ) )
15 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
16 12 15 clmneg1 ( 𝑊 ∈ ℂMod → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
17 16 adantr ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉 ) → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
18 1 12 3 15 clmvscl ( ( 𝑊 ∈ ℂMod ∧ - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴𝑉 ) → ( - 1 · 𝐴 ) ∈ 𝑉 )
19 5 17 10 18 syl3anc ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉 ) → ( - 1 · 𝐴 ) ∈ 𝑉 )
20 1 11 4 grprid ( ( 𝑊 ∈ Grp ∧ ( - 1 · 𝐴 ) ∈ 𝑉 ) → ( ( - 1 · 𝐴 ) ( +g𝑊 ) 0 ) = ( - 1 · 𝐴 ) )
21 6 19 20 syl2an2r ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉 ) → ( ( - 1 · 𝐴 ) ( +g𝑊 ) 0 ) = ( - 1 · 𝐴 ) )
22 14 21 eqtrd ( ( 𝑊 ∈ ℂMod ∧ 𝐴𝑉 ) → ( 0 𝐴 ) = ( - 1 · 𝐴 ) )