Description: The scalar product of a subcomplex module matches the scalar product of the derived ZZ -module, which implies, together with zlmbas and zlmplusg , that any module over ZZ is structure-equivalent to the canonical ZZ -module ZModG . (Contributed by Mario Carneiro, 30-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zlmclm.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
clmzlmvsca.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | ||
Assertion | clmzlmvsca | ⊢ ( ( 𝐺 ∈ ℂMod ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ( ·𝑠 ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zlmclm.w | ⊢ 𝑊 = ( ℤMod ‘ 𝐺 ) | |
2 | clmzlmvsca.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
3 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
4 | 1 3 | zlmvsca | ⊢ ( .g ‘ 𝐺 ) = ( ·𝑠 ‘ 𝑊 ) |
5 | 4 | eqcomi | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( .g ‘ 𝐺 ) |
6 | eqid | ⊢ ( ·𝑠 ‘ 𝐺 ) = ( ·𝑠 ‘ 𝐺 ) | |
7 | 2 5 6 | clmmulg | ⊢ ( ( 𝐺 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) = ( 𝐴 ( ·𝑠 ‘ 𝐺 ) 𝐵 ) ) |
8 | 7 | eqcomd | ⊢ ( ( 𝐺 ∈ ℂMod ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 ( ·𝑠 ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) |
9 | 8 | 3expb | ⊢ ( ( 𝐺 ∈ ℂMod ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐴 ( ·𝑠 ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( ·𝑠 ‘ 𝑊 ) 𝐵 ) ) |