Metamath Proof Explorer
Description: The scalar ring of a subcomplex module contains the integers.
(Contributed by Mario Carneiro, 16-Oct-2015)
|
|
Ref |
Expression |
|
Hypotheses |
clm0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
|
|
clmsub.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
|
Assertion |
clmzss |
⊢ ( 𝑊 ∈ ℂMod → ℤ ⊆ 𝐾 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
clm0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
clmsub.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
1 2
|
clmsubrg |
⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
4 |
|
zsssubrg |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → ℤ ⊆ 𝐾 ) |
5 |
3 4
|
syl |
⊢ ( 𝑊 ∈ ℂMod → ℤ ⊆ 𝐾 ) |