Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
1
|
dfclnbgr4 |
⊢ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) → ( 𝐺 ClNeighbVtx 𝐾 ) = ( { 𝐾 } ∪ ( 𝐺 NeighbVtx 𝐾 ) ) ) |
3 |
2
|
adantl |
⊢ ( ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ClNeighbVtx 𝐾 ) = ( { 𝐾 } ∪ ( 𝐺 NeighbVtx 𝐾 ) ) ) |
4 |
|
nbgr0edg |
⊢ ( ( Edg ‘ 𝐺 ) = ∅ → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |
5 |
4
|
adantr |
⊢ ( ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 NeighbVtx 𝐾 ) = ∅ ) |
6 |
5
|
uneq2d |
⊢ ( ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) → ( { 𝐾 } ∪ ( 𝐺 NeighbVtx 𝐾 ) ) = ( { 𝐾 } ∪ ∅ ) ) |
7 |
|
un0 |
⊢ ( { 𝐾 } ∪ ∅ ) = { 𝐾 } |
8 |
7
|
a1i |
⊢ ( ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) → ( { 𝐾 } ∪ ∅ ) = { 𝐾 } ) |
9 |
3 6 8
|
3eqtrd |
⊢ ( ( ( Edg ‘ 𝐺 ) = ∅ ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) → ( 𝐺 ClNeighbVtx 𝐾 ) = { 𝐾 } ) |