Step |
Hyp |
Ref |
Expression |
1 |
|
clnbgrcl.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
df-clnbgr |
⊢ ClNeighbVtx = ( 𝑔 ∈ V , 𝑣 ∈ ( Vtx ‘ 𝑔 ) ↦ ( { 𝑣 } ∪ { 𝑛 ∈ ( Vtx ‘ 𝑔 ) ∣ ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 } ) ) |
3 |
2
|
mpoxeldm |
⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) → ( 𝐺 ∈ V ∧ 𝑋 ∈ ⦋ 𝐺 / 𝑔 ⦌ ( Vtx ‘ 𝑔 ) ) ) |
4 |
|
csbfv |
⊢ ⦋ 𝐺 / 𝑔 ⦌ ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) |
5 |
4 1
|
eqtr4i |
⊢ ⦋ 𝐺 / 𝑔 ⦌ ( Vtx ‘ 𝑔 ) = 𝑉 |
6 |
5
|
eleq2i |
⊢ ( 𝑋 ∈ ⦋ 𝐺 / 𝑔 ⦌ ( Vtx ‘ 𝑔 ) ↔ 𝑋 ∈ 𝑉 ) |
7 |
6
|
biimpi |
⊢ ( 𝑋 ∈ ⦋ 𝐺 / 𝑔 ⦌ ( Vtx ‘ 𝑔 ) → 𝑋 ∈ 𝑉 ) |
8 |
3 7
|
simpl2im |
⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝑋 ) → 𝑋 ∈ 𝑉 ) |