Metamath Proof Explorer


Theorem clnbgrisvtx

Description: Every member N of the closed neighborhood of a vertex K is a vertex. (Contributed by AV, 9-May-2025)

Ref Expression
Hypothesis clnbgrvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion clnbgrisvtx ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) → 𝑁𝑉 )

Proof

Step Hyp Ref Expression
1 clnbgrvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
2 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
3 1 2 clnbgrel ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ ( ( 𝑁𝑉𝐾𝑉 ) ∧ ( 𝑁 = 𝐾 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ) ) )
4 simpll ( ( ( 𝑁𝑉𝐾𝑉 ) ∧ ( 𝑁 = 𝐾 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ) ) → 𝑁𝑉 )
5 3 4 sylbi ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) → 𝑁𝑉 )