Description: Every member N of the closed neighborhood of a vertex K is a vertex. (Contributed by AV, 9-May-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clnbgrvtxel.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
Assertion | clnbgrisvtx | ⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) → 𝑁 ∈ 𝑉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clnbgrvtxel.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
2 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
3 | 1 2 | clnbgrel | ⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑁 = 𝐾 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ) ) ) |
4 | simpll | ⊢ ( ( ( 𝑁 ∈ 𝑉 ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑁 = 𝐾 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ) ) → 𝑁 ∈ 𝑉 ) | |
5 | 3 4 | sylbi | ⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) → 𝑁 ∈ 𝑉 ) |