Step |
Hyp |
Ref |
Expression |
1 |
|
ancom |
⊢ ( ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) ↔ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) |
2 |
|
eqcom |
⊢ ( 𝑁 = 𝐾 ↔ 𝐾 = 𝑁 ) |
3 |
|
prcom |
⊢ { 𝐾 , 𝑁 } = { 𝑁 , 𝐾 } |
4 |
3
|
sseq1i |
⊢ ( { 𝐾 , 𝑁 } ⊆ 𝑒 ↔ { 𝑁 , 𝐾 } ⊆ 𝑒 ) |
5 |
4
|
rexbii |
⊢ ( ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝐾 } ⊆ 𝑒 ) |
6 |
2 5
|
orbi12i |
⊢ ( ( 𝑁 = 𝐾 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ) ↔ ( 𝐾 = 𝑁 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝐾 } ⊆ 𝑒 ) ) |
7 |
1 6
|
anbi12i |
⊢ ( ( ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑁 = 𝐾 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ) ) ↔ ( ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐾 = 𝑁 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝐾 } ⊆ 𝑒 ) ) ) |
8 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
9 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
10 |
8 9
|
clnbgrel |
⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ ( ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑁 = 𝐾 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ) ) ) |
11 |
8 9
|
clnbgrel |
⊢ ( 𝐾 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) ↔ ( ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐾 = 𝑁 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝐾 } ⊆ 𝑒 ) ) ) |
12 |
7 10 11
|
3bitr4i |
⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ 𝐾 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) ) |