Metamath Proof Explorer


Theorem clnbgrvtxel

Description: Every vertex K is a member of its closed neighborhood. (Contributed by AV, 10-May-2025)

Ref Expression
Hypothesis clnbgrvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion clnbgrvtxel ( 𝐾𝑉𝐾 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) )

Proof

Step Hyp Ref Expression
1 clnbgrvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
2 id ( 𝐾𝑉𝐾𝑉 )
3 eqidd ( 𝐾𝑉𝐾 = 𝐾 )
4 3 orcd ( 𝐾𝑉 → ( 𝐾 = 𝐾 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝐾 } ⊆ 𝑒 ) )
5 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
6 1 5 clnbgrel ( 𝐾 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ ( ( 𝐾𝑉𝐾𝑉 ) ∧ ( 𝐾 = 𝐾 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝐾 } ⊆ 𝑒 ) ) )
7 2 2 4 6 syl21anbrc ( 𝐾𝑉𝐾 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) )