Metamath Proof Explorer


Theorem clnbupgr

Description: The closed neighborhood of a vertex in a pseudograph. (Contributed by AV, 10-May-2025)

Ref Expression
Hypotheses clnbuhgr.v 𝑉 = ( Vtx ‘ 𝐺 )
clnbuhgr.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion clnbupgr ( ( 𝐺 ∈ UPGraph ∧ 𝑁𝑉 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) )

Proof

Step Hyp Ref Expression
1 clnbuhgr.v 𝑉 = ( Vtx ‘ 𝐺 )
2 clnbuhgr.e 𝐸 = ( Edg ‘ 𝐺 )
3 1 dfclnbgr4 ( 𝑁𝑉 → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) )
4 3 adantl ( ( 𝐺 ∈ UPGraph ∧ 𝑁𝑉 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) )
5 1 2 nbupgr ( ( 𝐺 ∈ UPGraph ∧ 𝑁𝑉 ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } )
6 5 uneq2d ( ( 𝐺 ∈ UPGraph ∧ 𝑁𝑉 ) → ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) = ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) )
7 rabdif ( { 𝑛𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ∖ { 𝑁 } ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 }
8 7 eqcomi { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } = ( { 𝑛𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ∖ { 𝑁 } )
9 8 uneq2i ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) = ( { 𝑁 } ∪ ( { 𝑛𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ∖ { 𝑁 } ) )
10 undif2 ( { 𝑁 } ∪ ( { 𝑛𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ∖ { 𝑁 } ) ) = ( { 𝑁 } ∪ { 𝑛𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } )
11 9 10 eqtri ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) = ( { 𝑁 } ∪ { 𝑛𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } )
12 11 a1i ( ( 𝐺 ∈ UPGraph ∧ 𝑁𝑉 ) → ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) = ( { 𝑁 } ∪ { 𝑛𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) )
13 4 6 12 3eqtrd ( ( 𝐺 ∈ UPGraph ∧ 𝑁𝑉 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) )