Step |
Hyp |
Ref |
Expression |
1 |
|
clnbuhgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
clnbuhgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1
|
dfclnbgr4 |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
5 |
1 2
|
nbupgr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |
6 |
5
|
uneq2d |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) = ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) ) |
7 |
|
rabdif |
⊢ ( { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ∖ { 𝑁 } ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } |
8 |
7
|
eqcomi |
⊢ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } = ( { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ∖ { 𝑁 } ) |
9 |
8
|
uneq2i |
⊢ ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) = ( { 𝑁 } ∪ ( { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ∖ { 𝑁 } ) ) |
10 |
|
undif2 |
⊢ ( { 𝑁 } ∪ ( { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ∖ { 𝑁 } ) ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |
11 |
9 10
|
eqtri |
⊢ ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |
12 |
11
|
a1i |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) ) |
13 |
4 6 12
|
3eqtrd |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) ) |