Metamath Proof Explorer


Theorem clnbusgrfi

Description: The closed neighborhood of a vertex in a simple graph with a finite number of edges is a finite set. (Contributed by AV, 10-May-2025)

Ref Expression
Hypotheses clnbusgrf1o.v 𝑉 = ( Vtx ‘ 𝐺 )
clnbusgrf1o.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion clnbusgrfi ( ( 𝐺 ∈ USGraph ∧ 𝐸 ∈ Fin ∧ 𝑈𝑉 ) → ( 𝐺 ClNeighbVtx 𝑈 ) ∈ Fin )

Proof

Step Hyp Ref Expression
1 clnbusgrf1o.v 𝑉 = ( Vtx ‘ 𝐺 )
2 clnbusgrf1o.e 𝐸 = ( Edg ‘ 𝐺 )
3 rabfi ( 𝐸 ∈ Fin → { 𝑒𝐸𝑈𝑒 } ∈ Fin )
4 3 3ad2ant2 ( ( 𝐺 ∈ USGraph ∧ 𝐸 ∈ Fin ∧ 𝑈𝑉 ) → { 𝑒𝐸𝑈𝑒 } ∈ Fin )
5 1 2 edgusgrclnbfin ( ( 𝐺 ∈ USGraph ∧ 𝑈𝑉 ) → ( ( 𝐺 ClNeighbVtx 𝑈 ) ∈ Fin ↔ { 𝑒𝐸𝑈𝑒 } ∈ Fin ) )
6 5 3adant2 ( ( 𝐺 ∈ USGraph ∧ 𝐸 ∈ Fin ∧ 𝑈𝑉 ) → ( ( 𝐺 ClNeighbVtx 𝑈 ) ∈ Fin ↔ { 𝑒𝐸𝑈𝑒 } ∈ Fin ) )
7 4 6 mpbird ( ( 𝐺 ∈ USGraph ∧ 𝐸 ∈ Fin ∧ 𝑈𝑉 ) → ( 𝐺 ClNeighbVtx 𝑈 ) ∈ Fin )