Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
clsval |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
3 |
1
|
topcld |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
4 |
3
|
anim1i |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝑋 ) ) |
5 |
|
sseq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑋 ) ) |
6 |
5
|
elrab |
⊢ ( 𝑋 ∈ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ↔ ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝑋 ) ) |
7 |
4 6
|
sylibr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 ∈ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
8 |
7
|
ne0d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ≠ ∅ ) |
9 |
|
ssrab2 |
⊢ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ⊆ ( Clsd ‘ 𝐽 ) |
10 |
|
intcld |
⊢ ( ( { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ≠ ∅ ∧ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ⊆ ( Clsd ‘ 𝐽 ) ) → ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
11 |
8 9 10
|
sylancl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ∈ ( Clsd ‘ 𝐽 ) ) |
12 |
2 11
|
eqeltrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) |