Step |
Hyp |
Ref |
Expression |
1 |
|
clsocv.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
clsocv.o |
⊢ 𝑂 = ( ocv ‘ 𝑊 ) |
3 |
|
clsocv.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
4 |
|
cphngp |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) |
5 |
|
ngptps |
⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp ) |
6 |
4 5
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ TopSp ) |
7 |
6
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑊 ∈ TopSp ) |
8 |
1 3
|
istps |
⊢ ( 𝑊 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ 𝑉 ) ) |
9 |
7 8
|
sylib |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝐽 ∈ ( TopOn ‘ 𝑉 ) ) |
10 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑉 ) → 𝐽 ∈ Top ) |
11 |
9 10
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝐽 ∈ Top ) |
12 |
|
simpr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ 𝑉 ) |
13 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑉 ) → 𝑉 = ∪ 𝐽 ) |
14 |
9 13
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑉 = ∪ 𝐽 ) |
15 |
12 14
|
sseqtrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ∪ 𝐽 ) |
16 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
17 |
16
|
sscls |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
18 |
11 15 17
|
syl2anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
19 |
2
|
ocv2ss |
⊢ ( 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → ( 𝑂 ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( 𝑂 ‘ 𝑆 ) ) |
20 |
18 19
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑂 ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( 𝑂 ‘ 𝑆 ) ) |
21 |
16
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∪ 𝐽 ) |
22 |
11 15 21
|
syl2anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∪ 𝐽 ) |
23 |
22 14
|
sseqtrrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑉 ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑉 ) |
25 |
1 2
|
ocvss |
⊢ ( 𝑂 ‘ 𝑆 ) ⊆ 𝑉 |
26 |
25
|
a1i |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑂 ‘ 𝑆 ) ⊆ 𝑉 ) |
27 |
26
|
sselda |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → 𝑥 ∈ 𝑉 ) |
28 |
|
df-ss |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑉 ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑉 ) = ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
29 |
24 28
|
sylib |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑉 ) = ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
30 |
29
|
ineq1d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑉 ) ∩ { 𝑦 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ { 𝑦 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
31 |
|
dfrab3 |
⊢ { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } = ( 𝑉 ∩ { 𝑦 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
32 |
31
|
ineq2i |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( 𝑉 ∩ { 𝑦 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
33 |
|
inass |
⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑉 ) ∩ { 𝑦 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ ( 𝑉 ∩ { 𝑦 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
34 |
32 33
|
eqtr4i |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ 𝑉 ) ∩ { 𝑦 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
35 |
|
dfrab3 |
⊢ { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ { 𝑦 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
36 |
30 34 35
|
3eqtr4g |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
37 |
16
|
clscld |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) |
38 |
11 15 37
|
syl2anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ) |
40 |
|
fvex |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ V |
41 |
|
eqid |
⊢ ( 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
42 |
41
|
mptiniseg |
⊢ ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ V → ( ◡ ( 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) “ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
43 |
40 42
|
ax-mp |
⊢ ( ◡ ( 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) “ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } |
44 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
45 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
46 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → 𝑊 ∈ ℂPreHil ) |
47 |
9
|
adantr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑉 ) ) |
48 |
47 47 27
|
cnmptc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( 𝑦 ∈ 𝑉 ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
49 |
47
|
cnmptid |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( 𝑦 ∈ 𝑉 ↦ 𝑦 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
50 |
3 44 45 46 47 48 49
|
cnmpt1ip |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
51 |
44
|
cnfldhaus |
⊢ ( TopOpen ‘ ℂfld ) ∈ Haus |
52 |
|
cphclm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |
53 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
54 |
53
|
clm0 |
⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
55 |
52 54
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
56 |
55
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
57 |
|
0cn |
⊢ 0 ∈ ℂ |
58 |
56 57
|
eqeltrrdi |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ ℂ ) |
59 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
60 |
59
|
sncld |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Haus ∧ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ ℂ ) → { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
61 |
51 58 60
|
sylancr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
62 |
|
cnclima |
⊢ ( ( ( 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ∧ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) → ( ◡ ( 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) “ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
63 |
50 61 62
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ◡ ( 𝑦 ∈ 𝑉 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) “ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
64 |
43 63
|
eqeltrrid |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ 𝐽 ) ) |
65 |
|
incld |
⊢ ( ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) ∧ { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ 𝐽 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
66 |
39 64 65
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∩ { 𝑦 ∈ 𝑉 ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
67 |
36 66
|
eqeltrrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ 𝐽 ) ) |
68 |
18
|
adantr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
69 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
70 |
1 45 53 69 2
|
ocvi |
⊢ ( ( 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
71 |
70
|
ralrimiva |
⊢ ( 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
73 |
|
ssrab |
⊢ ( 𝑆 ⊆ { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ↔ ( 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
74 |
68 72 73
|
sylanbrc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → 𝑆 ⊆ { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
75 |
16
|
clsss2 |
⊢ ( ( { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
76 |
67 74 75
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
77 |
|
ssrab2 |
⊢ { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) |
78 |
77
|
a1i |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
79 |
76 78
|
eqssd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
80 |
|
rabid2 |
⊢ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ↔ ∀ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
81 |
79 80
|
sylib |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → ∀ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
82 |
1 45 53 69 2
|
elocv |
⊢ ( 𝑥 ∈ ( 𝑂 ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ ∀ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
83 |
24 27 81 82
|
syl3anbrc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) ∧ 𝑥 ∈ ( 𝑂 ‘ 𝑆 ) ) → 𝑥 ∈ ( 𝑂 ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
84 |
20 83
|
eqelssd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝑂 ‘ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) = ( 𝑂 ‘ 𝑆 ) ) |