Step |
Hyp |
Ref |
Expression |
1 |
|
clscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
sstr2 |
⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑆 ⊆ 𝑥 → 𝑇 ⊆ 𝑥 ) ) |
3 |
2
|
adantr |
⊢ ( ( 𝑇 ⊆ 𝑆 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑆 ⊆ 𝑥 → 𝑇 ⊆ 𝑥 ) ) |
4 |
3
|
ss2rabdv |
⊢ ( 𝑇 ⊆ 𝑆 → { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ⊆ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ) |
5 |
|
intss |
⊢ ( { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ⊆ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } → ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ⊆ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
6 |
4 5
|
syl |
⊢ ( 𝑇 ⊆ 𝑆 → ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ⊆ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
7 |
6
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ⊆ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
8 |
|
simp1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝐽 ∈ Top ) |
9 |
|
sstr2 |
⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑆 ⊆ 𝑋 → 𝑇 ⊆ 𝑋 ) ) |
10 |
9
|
impcom |
⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑋 ) |
11 |
10
|
3adant1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑋 ) |
12 |
1
|
clsval |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ) |
13 |
8 11 12
|
syl2anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ) |
14 |
1
|
clsval |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
15 |
14
|
3adant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
16 |
7 13 15
|
3sstr4d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |