| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
sstr2 |
⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑆 ⊆ 𝑥 → 𝑇 ⊆ 𝑥 ) ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝑇 ⊆ 𝑆 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑆 ⊆ 𝑥 → 𝑇 ⊆ 𝑥 ) ) |
| 4 |
3
|
ss2rabdv |
⊢ ( 𝑇 ⊆ 𝑆 → { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ⊆ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ) |
| 5 |
|
intss |
⊢ ( { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ⊆ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } → ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ⊆ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
| 6 |
4 5
|
syl |
⊢ ( 𝑇 ⊆ 𝑆 → ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ⊆ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
| 7 |
6
|
3ad2ant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ⊆ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
| 8 |
|
simp1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝐽 ∈ Top ) |
| 9 |
|
sstr2 |
⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑆 ⊆ 𝑋 → 𝑇 ⊆ 𝑋 ) ) |
| 10 |
9
|
impcom |
⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑋 ) |
| 11 |
10
|
3adant1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑋 ) |
| 12 |
1
|
clsval |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ) |
| 13 |
8 11 12
|
syl2anc |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ) |
| 14 |
1
|
clsval |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
| 15 |
14
|
3adant3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
| 16 |
7 13 15
|
3sstr4d |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |