| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
cldrcl |
⊢ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) → 𝐽 ∈ Top ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝐶 ) → 𝐽 ∈ Top ) |
| 4 |
1
|
cldss |
⊢ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) → 𝐶 ⊆ 𝑋 ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝐶 ) → 𝐶 ⊆ 𝑋 ) |
| 6 |
|
simpr |
⊢ ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝐶 ) → 𝑆 ⊆ 𝐶 ) |
| 7 |
1
|
clsss |
⊢ ( ( 𝐽 ∈ Top ∧ 𝐶 ⊆ 𝑋 ∧ 𝑆 ⊆ 𝐶 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ) |
| 8 |
3 5 6 7
|
syl3anc |
⊢ ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝐶 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) ) |
| 9 |
|
cldcls |
⊢ ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) = 𝐶 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝐶 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐶 ) = 𝐶 ) |
| 11 |
8 10
|
sseqtrd |
⊢ ( ( 𝐶 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝐶 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝐶 ) |