Metamath Proof Explorer


Theorem clsss3

Description: The closure of a subset of a topological space is included in the space. (Contributed by NM, 26-Feb-2007)

Ref Expression
Hypothesis clscld.1 𝑋 = 𝐽
Assertion clsss3 ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 )

Proof

Step Hyp Ref Expression
1 clscld.1 𝑋 = 𝐽
2 1 clscld ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) )
3 1 cldss ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( Clsd ‘ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 )
4 2 3 syl ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 )