Step |
Hyp |
Ref |
Expression |
1 |
|
subgntr.h |
⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
3 |
1 2
|
tgptopon |
⊢ ( 𝐺 ∈ TopGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
5 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → 𝐽 ∈ Top ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐽 ∈ Top ) |
7 |
2
|
subgss |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ( Base ‘ 𝐺 ) ) |
9 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) |
10 |
4 9
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( Base ‘ 𝐺 ) = ∪ 𝐽 ) |
11 |
8 10
|
sseqtrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ∪ 𝐽 ) |
12 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
13 |
12
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∪ 𝐽 ) |
14 |
6 11 13
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ∪ 𝐽 ) |
15 |
14 10
|
sseqtrrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ) |
16 |
12
|
sscls |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
17 |
6 11 16
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
18 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
19 |
18
|
subg0cl |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
20 |
19
|
adantl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝑆 ) |
21 |
20
|
ne0d |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑆 ≠ ∅ ) |
22 |
|
ssn0 |
⊢ ( ( 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑆 ≠ ∅ ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ≠ ∅ ) |
23 |
17 21 22
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ≠ ∅ ) |
24 |
|
df-ov |
⊢ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) |
25 |
|
opelxpi |
⊢ ( ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) × ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
26 |
|
txcls |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) ∧ ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) ) → ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( 𝑆 × 𝑆 ) ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) × ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
27 |
4 4 8 8 26
|
syl22anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( 𝑆 × 𝑆 ) ) = ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) × ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
28 |
|
txtopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) → ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) |
29 |
4 4 28
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ) |
30 |
|
topontop |
⊢ ( ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) |
31 |
29 30
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐽 ×t 𝐽 ) ∈ Top ) |
32 |
|
cnvimass |
⊢ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ⊆ dom ( -g ‘ 𝐺 ) |
33 |
|
tgpgrp |
⊢ ( 𝐺 ∈ TopGrp → 𝐺 ∈ Grp ) |
34 |
33
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐺 ∈ Grp ) |
35 |
|
eqid |
⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) |
36 |
2 35
|
grpsubf |
⊢ ( 𝐺 ∈ Grp → ( -g ‘ 𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
37 |
34 36
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( -g ‘ 𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) ) |
38 |
32 37
|
fssdm |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
39 |
|
toponuni |
⊢ ( ( 𝐽 ×t 𝐽 ) ∈ ( TopOn ‘ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) → ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) = ∪ ( 𝐽 ×t 𝐽 ) ) |
40 |
29 39
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) = ∪ ( 𝐽 ×t 𝐽 ) ) |
41 |
38 40
|
sseqtrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ⊆ ∪ ( 𝐽 ×t 𝐽 ) ) |
42 |
35
|
subgsubcl |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
43 |
42
|
3expb |
⊢ ( ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
44 |
43
|
ralrimivva |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
45 |
|
fveq2 |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( -g ‘ 𝐺 ) ‘ 𝑧 ) = ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ) |
46 |
45 24
|
eqtr4di |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( -g ‘ 𝐺 ) ‘ 𝑧 ) = ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) |
47 |
46
|
eleq1d |
⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( ( ( -g ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ↔ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) ) |
48 |
47
|
ralxp |
⊢ ( ∀ 𝑧 ∈ ( 𝑆 × 𝑆 ) ( ( -g ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ 𝑆 ) |
49 |
44 48
|
sylibr |
⊢ ( 𝑆 ∈ ( SubGrp ‘ 𝐺 ) → ∀ 𝑧 ∈ ( 𝑆 × 𝑆 ) ( ( -g ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ) |
50 |
49
|
adantl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ∀ 𝑧 ∈ ( 𝑆 × 𝑆 ) ( ( -g ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ) |
51 |
37
|
ffund |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → Fun ( -g ‘ 𝐺 ) ) |
52 |
|
xpss12 |
⊢ ( ( 𝑆 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑆 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑆 × 𝑆 ) ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
53 |
8 8 52
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑆 × 𝑆 ) ⊆ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
54 |
37
|
fdmd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → dom ( -g ‘ 𝐺 ) = ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
55 |
53 54
|
sseqtrrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑆 × 𝑆 ) ⊆ dom ( -g ‘ 𝐺 ) ) |
56 |
|
funimass5 |
⊢ ( ( Fun ( -g ‘ 𝐺 ) ∧ ( 𝑆 × 𝑆 ) ⊆ dom ( -g ‘ 𝐺 ) ) → ( ( 𝑆 × 𝑆 ) ⊆ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ↔ ∀ 𝑧 ∈ ( 𝑆 × 𝑆 ) ( ( -g ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ) ) |
57 |
51 55 56
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝑆 × 𝑆 ) ⊆ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ↔ ∀ 𝑧 ∈ ( 𝑆 × 𝑆 ) ( ( -g ‘ 𝐺 ) ‘ 𝑧 ) ∈ 𝑆 ) ) |
58 |
50 57
|
mpbird |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑆 × 𝑆 ) ⊆ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ) |
59 |
|
eqid |
⊢ ∪ ( 𝐽 ×t 𝐽 ) = ∪ ( 𝐽 ×t 𝐽 ) |
60 |
59
|
clsss |
⊢ ( ( ( 𝐽 ×t 𝐽 ) ∈ Top ∧ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ⊆ ∪ ( 𝐽 ×t 𝐽 ) ∧ ( 𝑆 × 𝑆 ) ⊆ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ) → ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( 𝑆 × 𝑆 ) ) ⊆ ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ) ) |
61 |
31 41 58 60
|
syl3anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( 𝑆 × 𝑆 ) ) ⊆ ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ) ) |
62 |
1 35
|
tgpsubcn |
⊢ ( 𝐺 ∈ TopGrp → ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
63 |
62
|
adantr |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ) |
64 |
12
|
cncls2i |
⊢ ( ( ( -g ‘ 𝐺 ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝐽 ) ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ) ⊆ ( ◡ ( -g ‘ 𝐺 ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
65 |
63 11 64
|
syl2anc |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( ◡ ( -g ‘ 𝐺 ) “ 𝑆 ) ) ⊆ ( ◡ ( -g ‘ 𝐺 ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
66 |
61 65
|
sstrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ ( 𝐽 ×t 𝐽 ) ) ‘ ( 𝑆 × 𝑆 ) ) ⊆ ( ◡ ( -g ‘ 𝐺 ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
67 |
27 66
|
eqsstrrd |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) × ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ⊆ ( ◡ ( -g ‘ 𝐺 ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
68 |
67
|
sselda |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ 〈 𝑥 , 𝑦 〉 ∈ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) × ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐺 ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
69 |
25 68
|
sylan2 |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) → 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐺 ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
70 |
33
|
ad2antrr |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) → 𝐺 ∈ Grp ) |
71 |
|
ffn |
⊢ ( ( -g ‘ 𝐺 ) : ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ⟶ ( Base ‘ 𝐺 ) → ( -g ‘ 𝐺 ) Fn ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
72 |
|
elpreima |
⊢ ( ( -g ‘ 𝐺 ) Fn ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐺 ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
73 |
70 36 71 72
|
4syl |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ◡ ( -g ‘ 𝐺 ) “ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
74 |
69 73
|
mpbid |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ∧ ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
75 |
74
|
simprd |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) → ( ( -g ‘ 𝐺 ) ‘ 〈 𝑥 , 𝑦 〉 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
76 |
24 75
|
eqeltrid |
⊢ ( ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∧ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
77 |
76
|
ralrimivva |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ∀ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∀ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
78 |
2 35
|
issubg4 |
⊢ ( 𝐺 ∈ Grp → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∀ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
79 |
34 78
|
syl |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ↔ ( ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝐺 ) ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ≠ ∅ ∧ ∀ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∀ 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) ) |
80 |
15 23 77 79
|
mpbir3and |
⊢ ( ( 𝐺 ∈ TopGrp ∧ 𝑆 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ∈ ( SubGrp ‘ 𝐺 ) ) |