Step |
Hyp |
Ref |
Expression |
1 |
|
iscld.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
clsfval |
⊢ ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) = ( 𝑦 ∈ 𝒫 𝑋 ↦ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦 ⊆ 𝑥 } ) ) |
3 |
2
|
fveq1d |
⊢ ( 𝐽 ∈ Top → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑦 ∈ 𝒫 𝑋 ↦ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦 ⊆ 𝑥 } ) ‘ 𝑆 ) ) |
4 |
3
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑦 ∈ 𝒫 𝑋 ↦ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦 ⊆ 𝑥 } ) ‘ 𝑆 ) ) |
5 |
|
eqid |
⊢ ( 𝑦 ∈ 𝒫 𝑋 ↦ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦 ⊆ 𝑥 } ) = ( 𝑦 ∈ 𝒫 𝑋 ↦ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦 ⊆ 𝑥 } ) |
6 |
|
sseq1 |
⊢ ( 𝑦 = 𝑆 → ( 𝑦 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑥 ) ) |
7 |
6
|
rabbidv |
⊢ ( 𝑦 = 𝑆 → { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦 ⊆ 𝑥 } = { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
8 |
7
|
inteqd |
⊢ ( 𝑦 = 𝑆 → ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦 ⊆ 𝑥 } = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
9 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
10 |
|
elpw2g |
⊢ ( 𝑋 ∈ 𝐽 → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
11 |
9 10
|
syl |
⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
12 |
11
|
biimpar |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ 𝒫 𝑋 ) |
13 |
1
|
topcld |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
14 |
|
sseq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑋 ) ) |
15 |
14
|
rspcev |
⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝑋 ) → ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝑆 ⊆ 𝑥 ) |
16 |
13 15
|
sylan |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝑆 ⊆ 𝑥 ) |
17 |
|
intexrab |
⊢ ( ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝑆 ⊆ 𝑥 ↔ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ∈ V ) |
18 |
16 17
|
sylib |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ∈ V ) |
19 |
5 8 12 18
|
fvmptd3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑦 ∈ 𝒫 𝑋 ↦ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦 ⊆ 𝑥 } ) ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
20 |
4 19
|
eqtrd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |