| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlkclwwlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | clwlkclwwlk.e | ⊢ 𝐸  =  ( iEdg ‘ 𝐺 ) | 
						
							| 3 |  | simp1 | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  𝐺  ∈  USPGraph ) | 
						
							| 4 |  | wrdsymb1 | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝑃 ‘ 0 )  ∈  𝑉 ) | 
						
							| 5 | 4 | s1cld | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  〈“ ( 𝑃 ‘ 0 ) ”〉  ∈  Word  𝑉 ) | 
						
							| 6 |  | ccatcl | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  〈“ ( 𝑃 ‘ 0 ) ”〉  ∈  Word  𝑉 )  →  ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  ∈  Word  𝑉 ) | 
						
							| 7 | 5 6 | syldan | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  ∈  Word  𝑉 ) | 
						
							| 8 | 7 | 3adant1 | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  ∈  Word  𝑉 ) | 
						
							| 9 |  | lencl | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 10 |  | 1e2m1 | ⊢ 1  =  ( 2  −  1 ) | 
						
							| 11 | 10 | breq1i | ⊢ ( 1  ≤  ( ♯ ‘ 𝑃 )  ↔  ( 2  −  1 )  ≤  ( ♯ ‘ 𝑃 ) ) | 
						
							| 12 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 13 | 12 | a1i | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  2  ∈  ℝ ) | 
						
							| 14 |  | 1red | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  1  ∈  ℝ ) | 
						
							| 15 |  | nn0re | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ♯ ‘ 𝑃 )  ∈  ℝ ) | 
						
							| 16 | 13 14 15 | lesubaddd | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( 2  −  1 )  ≤  ( ♯ ‘ 𝑃 )  ↔  2  ≤  ( ( ♯ ‘ 𝑃 )  +  1 ) ) ) | 
						
							| 17 | 11 16 | bitrid | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( 1  ≤  ( ♯ ‘ 𝑃 )  ↔  2  ≤  ( ( ♯ ‘ 𝑃 )  +  1 ) ) ) | 
						
							| 18 | 9 17 | syl | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( 1  ≤  ( ♯ ‘ 𝑃 )  ↔  2  ≤  ( ( ♯ ‘ 𝑃 )  +  1 ) ) ) | 
						
							| 19 | 18 | biimpa | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  2  ≤  ( ( ♯ ‘ 𝑃 )  +  1 ) ) | 
						
							| 20 |  | s1len | ⊢ ( ♯ ‘ 〈“ ( 𝑃 ‘ 0 ) ”〉 )  =  1 | 
						
							| 21 | 20 | oveq2i | ⊢ ( ( ♯ ‘ 𝑃 )  +  ( ♯ ‘ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  =  ( ( ♯ ‘ 𝑃 )  +  1 ) | 
						
							| 22 | 19 21 | breqtrrdi | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  2  ≤  ( ( ♯ ‘ 𝑃 )  +  ( ♯ ‘ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) ) | 
						
							| 23 |  | ccatlen | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  〈“ ( 𝑃 ‘ 0 ) ”〉  ∈  Word  𝑉 )  →  ( ♯ ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  =  ( ( ♯ ‘ 𝑃 )  +  ( ♯ ‘ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) ) | 
						
							| 24 | 5 23 | syldan | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  =  ( ( ♯ ‘ 𝑃 )  +  ( ♯ ‘ 〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) ) | 
						
							| 25 | 22 24 | breqtrrd | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  2  ≤  ( ♯ ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) ) | 
						
							| 26 | 25 | 3adant1 | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  2  ≤  ( ♯ ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) ) | 
						
							| 27 | 1 2 | clwlkclwwlk | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) ) )  →  ( ∃ 𝑓 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  ↔  ( ( lastS ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  =  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 )  ∧  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  prefix  ( ( ♯ ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  −  1 ) )  ∈  ( ClWWalks ‘ 𝐺 ) ) ) ) | 
						
							| 28 | 3 8 26 27 | syl3anc | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ∃ 𝑓 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  ↔  ( ( lastS ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  =  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 )  ∧  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  prefix  ( ( ♯ ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  −  1 ) )  ∈  ( ClWWalks ‘ 𝐺 ) ) ) ) | 
						
							| 29 |  | wrdlenccats1lenm1 | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( ♯ ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  −  1 )  =  ( ♯ ‘ 𝑃 ) ) | 
						
							| 30 | 29 | oveq2d | ⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  prefix  ( ( ♯ ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  −  1 ) )  =  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  prefix  ( ♯ ‘ 𝑃 ) ) ) | 
						
							| 31 | 30 | adantr | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  prefix  ( ( ♯ ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  −  1 ) )  =  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  prefix  ( ♯ ‘ 𝑃 ) ) ) | 
						
							| 32 |  | simpl | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  𝑃  ∈  Word  𝑉 ) | 
						
							| 33 |  | eqidd | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝑃 )  =  ( ♯ ‘ 𝑃 ) ) | 
						
							| 34 |  | pfxccatid | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  〈“ ( 𝑃 ‘ 0 ) ”〉  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑃 )  =  ( ♯ ‘ 𝑃 ) )  →  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  prefix  ( ♯ ‘ 𝑃 ) )  =  𝑃 ) | 
						
							| 35 | 32 5 33 34 | syl3anc | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  prefix  ( ♯ ‘ 𝑃 ) )  =  𝑃 ) | 
						
							| 36 | 31 35 | eqtr2d | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  𝑃  =  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  prefix  ( ( ♯ ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  −  1 ) ) ) | 
						
							| 37 | 36 | eleq1d | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝑃  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  prefix  ( ( ♯ ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  −  1 ) )  ∈  ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 38 |  | lswccats1fst | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( lastS ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  =  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 ) ) | 
						
							| 39 | 38 | biantrurd | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  prefix  ( ( ♯ ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  −  1 ) )  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( ( lastS ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  =  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 )  ∧  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  prefix  ( ( ♯ ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  −  1 ) )  ∈  ( ClWWalks ‘ 𝐺 ) ) ) ) | 
						
							| 40 | 37 39 | bitr2d | ⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ( lastS ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  =  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 )  ∧  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  prefix  ( ( ♯ ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  −  1 ) )  ∈  ( ClWWalks ‘ 𝐺 ) )  ↔  𝑃  ∈  ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 41 | 40 | 3adant1 | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ( lastS ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  =  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) ‘ 0 )  ∧  ( ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  prefix  ( ( ♯ ‘ ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 ) )  −  1 ) )  ∈  ( ClWWalks ‘ 𝐺 ) )  ↔  𝑃  ∈  ( ClWWalks ‘ 𝐺 ) ) ) | 
						
							| 42 | 28 41 | bitrd | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  Word  𝑉  ∧  1  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ∃ 𝑓 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑃  ++  〈“ ( 𝑃 ‘ 0 ) ”〉 )  ↔  𝑃  ∈  ( ClWWalks ‘ 𝐺 ) ) ) |