Step |
Hyp |
Ref |
Expression |
1 |
|
clwlkclwwlkf.c |
⊢ 𝐶 = { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ 1 ≤ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) } |
2 |
|
clwlkclwwlkf.a |
⊢ 𝐴 = ( 1st ‘ 𝑈 ) |
3 |
|
clwlkclwwlkf.b |
⊢ 𝐵 = ( 2nd ‘ 𝑈 ) |
4 |
|
clwlkclwwlkf.d |
⊢ 𝐷 = ( 1st ‘ 𝑊 ) |
5 |
|
clwlkclwwlkf.e |
⊢ 𝐸 = ( 2nd ‘ 𝑊 ) |
6 |
1 2 3 4 5
|
clwlkclwwlkf1lem2 |
⊢ ( ( 𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ ( 𝐵 prefix ( ♯ ‘ 𝐴 ) ) = ( 𝐸 prefix ( ♯ ‘ 𝐷 ) ) ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ) ) |
7 |
|
simprr |
⊢ ( ( ( 𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ ( 𝐵 prefix ( ♯ ‘ 𝐴 ) ) = ( 𝐸 prefix ( ♯ ‘ 𝐷 ) ) ) ∧ ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ) |
8 |
1 2 3
|
clwlkclwwlkflem |
⊢ ( 𝑈 ∈ 𝐶 → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
9 |
1 4 5
|
clwlkclwwlkflem |
⊢ ( 𝑊 ∈ 𝐶 → ( 𝐷 ( Walks ‘ 𝐺 ) 𝐸 ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ∧ ( ♯ ‘ 𝐷 ) ∈ ℕ ) ) |
10 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ↔ ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
11 |
10
|
biimpri |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
12 |
11
|
3ad2ant3 |
⊢ ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝐷 ( Walks ‘ 𝐺 ) 𝐸 ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ∧ ( ♯ ‘ 𝐷 ) ∈ ℕ ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
14 |
13
|
adantr |
⊢ ( ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝐷 ( Walks ‘ 𝐺 ) 𝐸 ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ∧ ( ♯ ‘ 𝐷 ) ∈ ℕ ) ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
15 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ 0 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 0 ) ) |
17 |
15 16
|
eqeq12d |
⊢ ( 𝑖 = 0 → ( ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ↔ ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) ) ) |
18 |
17
|
rspcv |
⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) → ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) ) ) |
19 |
14 18
|
syl |
⊢ ( ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝐷 ( Walks ‘ 𝐺 ) 𝐸 ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ∧ ( ♯ ‘ 𝐷 ) ∈ ℕ ) ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) → ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) ) ) |
20 |
|
simpl |
⊢ ( ( ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐵 ‘ 0 ) ∧ ( ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ) ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐵 ‘ 0 ) ) |
21 |
|
eqtr |
⊢ ( ( ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ) → ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐵 ‘ 0 ) ∧ ( ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ) ) → ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ) |
23 |
20 22
|
eqtrd |
⊢ ( ( ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐵 ‘ 0 ) ∧ ( ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ) ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ) |
24 |
23
|
exp32 |
⊢ ( ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐵 ‘ 0 ) → ( ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) → ( ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ) ) ) |
25 |
24
|
com23 |
⊢ ( ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐵 ‘ 0 ) → ( ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) → ( ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ) ) ) |
26 |
25
|
eqcoms |
⊢ ( ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) → ( ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) → ( ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ) ) ) |
27 |
26
|
3ad2ant2 |
⊢ ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) → ( ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ) ) ) |
28 |
27
|
com12 |
⊢ ( ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) → ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ) ) ) |
29 |
28
|
3ad2ant2 |
⊢ ( ( 𝐷 ( Walks ‘ 𝐺 ) 𝐸 ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ∧ ( ♯ ‘ 𝐷 ) ∈ ℕ ) → ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ) ) ) |
30 |
29
|
impcom |
⊢ ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝐷 ( Walks ‘ 𝐺 ) 𝐸 ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ∧ ( ♯ ‘ 𝐷 ) ∈ ℕ ) ) → ( ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ) ) |
31 |
30
|
adantr |
⊢ ( ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝐷 ( Walks ‘ 𝐺 ) 𝐸 ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ∧ ( ♯ ‘ 𝐷 ) ∈ ℕ ) ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ) → ( ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ) ) |
32 |
31
|
imp |
⊢ ( ( ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝐷 ( Walks ‘ 𝐺 ) 𝐸 ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ∧ ( ♯ ‘ 𝐷 ) ∈ ℕ ) ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ) ∧ ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ) |
33 |
|
fveq2 |
⊢ ( ( ♯ ‘ 𝐷 ) = ( ♯ ‘ 𝐴 ) → ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) |
34 |
33
|
eqcoms |
⊢ ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) → ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) |
35 |
34
|
adantl |
⊢ ( ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝐷 ( Walks ‘ 𝐺 ) 𝐸 ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ∧ ( ♯ ‘ 𝐷 ) ∈ ℕ ) ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ) → ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝐷 ( Walks ‘ 𝐺 ) 𝐸 ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ∧ ( ♯ ‘ 𝐷 ) ∈ ℕ ) ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ) ∧ ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) ) → ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) |
37 |
32 36
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝐷 ( Walks ‘ 𝐺 ) 𝐸 ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ∧ ( ♯ ‘ 𝐷 ) ∈ ℕ ) ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ) ∧ ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) |
38 |
37
|
ex |
⊢ ( ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝐷 ( Walks ‘ 𝐺 ) 𝐸 ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ∧ ( ♯ ‘ 𝐷 ) ∈ ℕ ) ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ) → ( ( 𝐵 ‘ 0 ) = ( 𝐸 ‘ 0 ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
39 |
19 38
|
syld |
⊢ ( ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝐷 ( Walks ‘ 𝐺 ) 𝐸 ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ∧ ( ♯ ‘ 𝐷 ) ∈ ℕ ) ) ∧ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
40 |
39
|
ex |
⊢ ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ∧ ( 𝐷 ( Walks ‘ 𝐺 ) 𝐸 ∧ ( 𝐸 ‘ 0 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐷 ) ) ∧ ( ♯ ‘ 𝐷 ) ∈ ℕ ) ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) ) ) |
41 |
8 9 40
|
syl2an |
⊢ ( ( 𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ) → ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) ) ) |
42 |
41
|
impd |
⊢ ( ( 𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ) → ( ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
43 |
42
|
3adant3 |
⊢ ( ( 𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ ( 𝐵 prefix ( ♯ ‘ 𝐴 ) ) = ( 𝐸 prefix ( ♯ ‘ 𝐷 ) ) ) → ( ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
44 |
43
|
imp |
⊢ ( ( ( 𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ ( 𝐵 prefix ( ♯ ‘ 𝐴 ) ) = ( 𝐸 prefix ( ♯ ‘ 𝐷 ) ) ) ∧ ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ) ) → ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) |
45 |
7 44
|
jca |
⊢ ( ( ( 𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ ( 𝐵 prefix ( ♯ ‘ 𝐴 ) ) = ( 𝐸 prefix ( ♯ ‘ 𝐷 ) ) ) ∧ ( ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐷 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ∧ ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
46 |
6 45
|
mpdan |
⊢ ( ( 𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ ( 𝐵 prefix ( ♯ ‘ 𝐴 ) ) = ( 𝐸 prefix ( ♯ ‘ 𝐷 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ∧ ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
47 |
|
fvex |
⊢ ( ♯ ‘ 𝐴 ) ∈ V |
48 |
|
fveq2 |
⊢ ( 𝑖 = ( ♯ ‘ 𝐴 ) → ( 𝐵 ‘ 𝑖 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ) |
49 |
|
fveq2 |
⊢ ( 𝑖 = ( ♯ ‘ 𝐴 ) → ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) |
50 |
48 49
|
eqeq12d |
⊢ ( 𝑖 = ( ♯ ‘ 𝐴 ) → ( ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ↔ ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
51 |
50
|
ralunsn |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ V → ( ∀ 𝑖 ∈ ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ∧ ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) ) ) |
52 |
47 51
|
ax-mp |
⊢ ( ∀ 𝑖 ∈ ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ∧ ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐸 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
53 |
46 52
|
sylibr |
⊢ ( ( 𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ ( 𝐵 prefix ( ♯ ‘ 𝐴 ) ) = ( 𝐸 prefix ( ♯ ‘ 𝐷 ) ) ) → ∀ 𝑖 ∈ ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ) |
54 |
|
nnnn0 |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
55 |
|
elnn0uz |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 0 ) ) |
56 |
54 55
|
sylib |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 0 ) ) |
57 |
56
|
3ad2ant3 |
⊢ ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 0 ) ) |
58 |
8 57
|
syl |
⊢ ( 𝑈 ∈ 𝐶 → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 0 ) ) |
59 |
58
|
3ad2ant1 |
⊢ ( ( 𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ ( 𝐵 prefix ( ♯ ‘ 𝐴 ) ) = ( 𝐸 prefix ( ♯ ‘ 𝐷 ) ) ) → ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 0 ) ) |
60 |
|
fzisfzounsn |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ 0 ) → ( 0 ... ( ♯ ‘ 𝐴 ) ) = ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ) |
61 |
59 60
|
syl |
⊢ ( ( 𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ ( 𝐵 prefix ( ♯ ‘ 𝐴 ) ) = ( 𝐸 prefix ( ♯ ‘ 𝐷 ) ) ) → ( 0 ... ( ♯ ‘ 𝐴 ) ) = ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ) |
62 |
61
|
raleqdv |
⊢ ( ( 𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ ( 𝐵 prefix ( ♯ ‘ 𝐴 ) ) = ( 𝐸 prefix ( ♯ ‘ 𝐷 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ ( ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ∪ { ( ♯ ‘ 𝐴 ) } ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ) ) |
63 |
53 62
|
mpbird |
⊢ ( ( 𝑈 ∈ 𝐶 ∧ 𝑊 ∈ 𝐶 ∧ ( 𝐵 prefix ( ♯ ‘ 𝐴 ) ) = ( 𝐸 prefix ( ♯ ‘ 𝐷 ) ) ) → ∀ 𝑖 ∈ ( 0 ... ( ♯ ‘ 𝐴 ) ) ( 𝐵 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑖 ) ) |