| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwlkclwwlkf.c |
⊢ 𝐶 = { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ 1 ≤ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) } |
| 2 |
|
clwlkclwwlkf.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝐶 ↦ ( ( 2nd ‘ 𝑐 ) prefix ( ( ♯ ‘ ( 2nd ‘ 𝑐 ) ) − 1 ) ) ) |
| 3 |
1 2
|
clwlkclwwlkf1 |
⊢ ( 𝐺 ∈ USPGraph → 𝐹 : 𝐶 –1-1→ ( ClWWalks ‘ 𝐺 ) ) |
| 4 |
1 2
|
clwlkclwwlkfo |
⊢ ( 𝐺 ∈ USPGraph → 𝐹 : 𝐶 –onto→ ( ClWWalks ‘ 𝐺 ) ) |
| 5 |
|
df-f1o |
⊢ ( 𝐹 : 𝐶 –1-1-onto→ ( ClWWalks ‘ 𝐺 ) ↔ ( 𝐹 : 𝐶 –1-1→ ( ClWWalks ‘ 𝐺 ) ∧ 𝐹 : 𝐶 –onto→ ( ClWWalks ‘ 𝐺 ) ) ) |
| 6 |
3 4 5
|
sylanbrc |
⊢ ( 𝐺 ∈ USPGraph → 𝐹 : 𝐶 –1-1-onto→ ( ClWWalks ‘ 𝐺 ) ) |