Step |
Hyp |
Ref |
Expression |
1 |
|
clwlkclwwlkf.c |
⊢ 𝐶 = { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ 1 ≤ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) } |
2 |
|
clwlkclwwlkf.a |
⊢ 𝐴 = ( 1st ‘ 𝑈 ) |
3 |
|
clwlkclwwlkf.b |
⊢ 𝐵 = ( 2nd ‘ 𝑈 ) |
4 |
|
fveq2 |
⊢ ( 𝑤 = 𝑈 → ( 1st ‘ 𝑤 ) = ( 1st ‘ 𝑈 ) ) |
5 |
4 2
|
eqtr4di |
⊢ ( 𝑤 = 𝑈 → ( 1st ‘ 𝑤 ) = 𝐴 ) |
6 |
5
|
fveq2d |
⊢ ( 𝑤 = 𝑈 → ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = ( ♯ ‘ 𝐴 ) ) |
7 |
6
|
breq2d |
⊢ ( 𝑤 = 𝑈 → ( 1 ≤ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) ↔ 1 ≤ ( ♯ ‘ 𝐴 ) ) ) |
8 |
7 1
|
elrab2 |
⊢ ( 𝑈 ∈ 𝐶 ↔ ( 𝑈 ∈ ( ClWalks ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝐴 ) ) ) |
9 |
|
clwlkwlk |
⊢ ( 𝑈 ∈ ( ClWalks ‘ 𝐺 ) → 𝑈 ∈ ( Walks ‘ 𝐺 ) ) |
10 |
|
wlkop |
⊢ ( 𝑈 ∈ ( Walks ‘ 𝐺 ) → 𝑈 = 〈 ( 1st ‘ 𝑈 ) , ( 2nd ‘ 𝑈 ) 〉 ) |
11 |
2 3
|
opeq12i |
⊢ 〈 𝐴 , 𝐵 〉 = 〈 ( 1st ‘ 𝑈 ) , ( 2nd ‘ 𝑈 ) 〉 |
12 |
11
|
eqeq2i |
⊢ ( 𝑈 = 〈 𝐴 , 𝐵 〉 ↔ 𝑈 = 〈 ( 1st ‘ 𝑈 ) , ( 2nd ‘ 𝑈 ) 〉 ) |
13 |
|
eleq1 |
⊢ ( 𝑈 = 〈 𝐴 , 𝐵 〉 → ( 𝑈 ∈ ( ClWalks ‘ 𝐺 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ClWalks ‘ 𝐺 ) ) ) |
14 |
|
df-br |
⊢ ( 𝐴 ( ClWalks ‘ 𝐺 ) 𝐵 ↔ 〈 𝐴 , 𝐵 〉 ∈ ( ClWalks ‘ 𝐺 ) ) |
15 |
|
isclwlk |
⊢ ( 𝐴 ( ClWalks ‘ 𝐺 ) 𝐵 ↔ ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ) ) |
16 |
|
wlkcl |
⊢ ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
17 |
|
elnnnn0c |
⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐴 ) ) ) |
18 |
17
|
a1i |
⊢ ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐴 ) ) ) ) |
19 |
16 18
|
mpbirand |
⊢ ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 → ( ( ♯ ‘ 𝐴 ) ∈ ℕ ↔ 1 ≤ ( ♯ ‘ 𝐴 ) ) ) |
20 |
19
|
bicomd |
⊢ ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 → ( 1 ≤ ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
21 |
20
|
adantr |
⊢ ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) ↔ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
22 |
21
|
pm5.32i |
⊢ ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ) ∧ 1 ≤ ( ♯ ‘ 𝐴 ) ) ↔ ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
23 |
|
df-3an |
⊢ ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ↔ ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
24 |
22 23
|
sylbb2 |
⊢ ( ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ) ∧ 1 ≤ ( ♯ ‘ 𝐴 ) ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
25 |
24
|
ex |
⊢ ( ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) ) |
26 |
15 25
|
sylbi |
⊢ ( 𝐴 ( ClWalks ‘ 𝐺 ) 𝐵 → ( 1 ≤ ( ♯ ‘ 𝐴 ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) ) |
27 |
14 26
|
sylbir |
⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( ClWalks ‘ 𝐺 ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) ) |
28 |
13 27
|
syl6bi |
⊢ ( 𝑈 = 〈 𝐴 , 𝐵 〉 → ( 𝑈 ∈ ( ClWalks ‘ 𝐺 ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) ) ) |
29 |
12 28
|
sylbir |
⊢ ( 𝑈 = 〈 ( 1st ‘ 𝑈 ) , ( 2nd ‘ 𝑈 ) 〉 → ( 𝑈 ∈ ( ClWalks ‘ 𝐺 ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) ) ) |
30 |
10 29
|
syl |
⊢ ( 𝑈 ∈ ( Walks ‘ 𝐺 ) → ( 𝑈 ∈ ( ClWalks ‘ 𝐺 ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) ) ) |
31 |
9 30
|
mpcom |
⊢ ( 𝑈 ∈ ( ClWalks ‘ 𝐺 ) → ( 1 ≤ ( ♯ ‘ 𝐴 ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) ) |
32 |
31
|
imp |
⊢ ( ( 𝑈 ∈ ( ClWalks ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝐴 ) ) → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |
33 |
8 32
|
sylbi |
⊢ ( 𝑈 ∈ 𝐶 → ( 𝐴 ( Walks ‘ 𝐺 ) 𝐵 ∧ ( 𝐵 ‘ 0 ) = ( 𝐵 ‘ ( ♯ ‘ 𝐴 ) ) ∧ ( ♯ ‘ 𝐴 ) ∈ ℕ ) ) |