Step |
Hyp |
Ref |
Expression |
1 |
|
clwlkclwwlkf.c |
⊢ 𝐶 = { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ 1 ≤ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) } |
2 |
|
clwlkclwwlkf.f |
⊢ 𝐹 = ( 𝑐 ∈ 𝐶 ↦ ( ( 2nd ‘ 𝑐 ) prefix ( ( ♯ ‘ ( 2nd ‘ 𝑐 ) ) − 1 ) ) ) |
3 |
1 2
|
clwlkclwwlkf |
⊢ ( 𝐺 ∈ USPGraph → 𝐹 : 𝐶 ⟶ ( ClWWalks ‘ 𝐺 ) ) |
4 |
|
clwwlkgt0 |
⊢ ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) → 0 < ( ♯ ‘ 𝑤 ) ) |
5 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
6 |
5
|
clwwlkbp |
⊢ ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑤 ≠ ∅ ) ) |
7 |
|
lencl |
⊢ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) → ( ♯ ‘ 𝑤 ) ∈ ℕ0 ) |
8 |
7
|
nn0zd |
⊢ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) → ( ♯ ‘ 𝑤 ) ∈ ℤ ) |
9 |
|
zgt0ge1 |
⊢ ( ( ♯ ‘ 𝑤 ) ∈ ℤ → ( 0 < ( ♯ ‘ 𝑤 ) ↔ 1 ≤ ( ♯ ‘ 𝑤 ) ) ) |
10 |
8 9
|
syl |
⊢ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) → ( 0 < ( ♯ ‘ 𝑤 ) ↔ 1 ≤ ( ♯ ‘ 𝑤 ) ) ) |
11 |
10
|
biimpd |
⊢ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) → ( 0 < ( ♯ ‘ 𝑤 ) → 1 ≤ ( ♯ ‘ 𝑤 ) ) ) |
12 |
11
|
anc2li |
⊢ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) → ( 0 < ( ♯ ‘ 𝑤 ) → ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ) ) |
13 |
12
|
3ad2ant2 |
⊢ ( ( 𝐺 ∈ V ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑤 ≠ ∅ ) → ( 0 < ( ♯ ‘ 𝑤 ) → ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ) ) |
14 |
6 13
|
syl |
⊢ ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) → ( 0 < ( ♯ ‘ 𝑤 ) → ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ) ) |
15 |
4 14
|
mpd |
⊢ ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ) → ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ) |
17 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
18 |
5 17
|
clwlkclwwlk2 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) → ( ∃ 𝑓 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) ↔ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ) ) |
19 |
|
df-br |
⊢ ( 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) ↔ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) |
20 |
|
simpr2 |
⊢ ( ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ) → 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) |
21 |
|
simpr3 |
⊢ ( ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ) → 1 ≤ ( ♯ ‘ 𝑤 ) ) |
22 |
|
simpl |
⊢ ( ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ) → 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) |
23 |
1
|
clwlkclwwlkfolem |
⊢ ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ∧ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ 𝐶 ) |
24 |
20 21 22 23
|
syl3anc |
⊢ ( ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ) → 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ 𝐶 ) |
25 |
23
|
3expa |
⊢ ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ∧ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ 𝐶 ) |
26 |
|
ovex |
⊢ ( ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) ) − 1 ) ) ∈ V |
27 |
|
fveq2 |
⊢ ( 𝑐 = 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 → ( 2nd ‘ 𝑐 ) = ( 2nd ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) ) |
28 |
|
2fveq3 |
⊢ ( 𝑐 = 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 → ( ♯ ‘ ( 2nd ‘ 𝑐 ) ) = ( ♯ ‘ ( 2nd ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) ) ) |
29 |
28
|
oveq1d |
⊢ ( 𝑐 = 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 → ( ( ♯ ‘ ( 2nd ‘ 𝑐 ) ) − 1 ) = ( ( ♯ ‘ ( 2nd ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) ) − 1 ) ) |
30 |
27 29
|
oveq12d |
⊢ ( 𝑐 = 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 → ( ( 2nd ‘ 𝑐 ) prefix ( ( ♯ ‘ ( 2nd ‘ 𝑐 ) ) − 1 ) ) = ( ( 2nd ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) prefix ( ( ♯ ‘ ( 2nd ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) ) − 1 ) ) ) |
31 |
|
vex |
⊢ 𝑓 ∈ V |
32 |
|
ovex |
⊢ ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) ∈ V |
33 |
31 32
|
op2nd |
⊢ ( 2nd ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) = ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) |
34 |
33
|
fveq2i |
⊢ ( ♯ ‘ ( 2nd ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) ) = ( ♯ ‘ ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) ) |
35 |
34
|
oveq1i |
⊢ ( ( ♯ ‘ ( 2nd ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) ) − 1 ) = ( ( ♯ ‘ ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) ) − 1 ) |
36 |
33 35
|
oveq12i |
⊢ ( ( 2nd ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) prefix ( ( ♯ ‘ ( 2nd ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) ) − 1 ) ) = ( ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) ) − 1 ) ) |
37 |
30 36
|
eqtrdi |
⊢ ( 𝑐 = 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 → ( ( 2nd ‘ 𝑐 ) prefix ( ( ♯ ‘ ( 2nd ‘ 𝑐 ) ) − 1 ) ) = ( ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) ) − 1 ) ) ) |
38 |
37 2
|
fvmptg |
⊢ ( ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ 𝐶 ∧ ( ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) ) − 1 ) ) ∈ V ) → ( 𝐹 ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) = ( ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) ) − 1 ) ) ) |
39 |
25 26 38
|
sylancl |
⊢ ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ∧ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → ( 𝐹 ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) = ( ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) ) − 1 ) ) ) |
40 |
|
wrdlenccats1lenm1 |
⊢ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) ) − 1 ) = ( ♯ ‘ 𝑤 ) ) |
41 |
40
|
ad2antrr |
⊢ ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ∧ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → ( ( ♯ ‘ ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) ) − 1 ) = ( ♯ ‘ 𝑤 ) ) |
42 |
41
|
oveq2d |
⊢ ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ∧ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → ( ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) prefix ( ( ♯ ‘ ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) ) − 1 ) ) = ( ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) prefix ( ♯ ‘ 𝑤 ) ) ) |
43 |
|
simpll |
⊢ ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ∧ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) |
44 |
|
simpl |
⊢ ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ∧ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ) |
45 |
|
wrdsymb1 |
⊢ ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) → ( 𝑤 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
46 |
44 45
|
syl |
⊢ ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ∧ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → ( 𝑤 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
47 |
46
|
s1cld |
⊢ ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ∧ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → 〈“ ( 𝑤 ‘ 0 ) ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ) |
48 |
|
eqidd |
⊢ ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ∧ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑤 ) ) |
49 |
|
pfxccatid |
⊢ ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 〈“ ( 𝑤 ‘ 0 ) ”〉 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑤 ) ) → ( ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) prefix ( ♯ ‘ 𝑤 ) ) = 𝑤 ) |
50 |
43 47 48 49
|
syl3anc |
⊢ ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ∧ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → ( ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) prefix ( ♯ ‘ 𝑤 ) ) = 𝑤 ) |
51 |
39 42 50
|
3eqtrrd |
⊢ ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ∧ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → 𝑤 = ( 𝐹 ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) ) |
52 |
51
|
ex |
⊢ ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) → ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) → 𝑤 = ( 𝐹 ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) ) ) |
53 |
52
|
3adant1 |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) → ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) → 𝑤 = ( 𝐹 ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) ) ) |
54 |
53
|
ad2antlr |
⊢ ( ( ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ) ∧ 𝑐 = 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) → ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) → 𝑤 = ( 𝐹 ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) ) ) |
55 |
|
fveq2 |
⊢ ( 𝑐 = 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 → ( 𝐹 ‘ 𝑐 ) = ( 𝐹 ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) ) |
56 |
55
|
eqeq2d |
⊢ ( 𝑐 = 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 → ( 𝑤 = ( 𝐹 ‘ 𝑐 ) ↔ 𝑤 = ( 𝐹 ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) ) ) |
57 |
56
|
imbi2d |
⊢ ( 𝑐 = 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 → ( ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) → 𝑤 = ( 𝐹 ‘ 𝑐 ) ) ↔ ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) → 𝑤 = ( 𝐹 ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) ) ) ) |
58 |
57
|
adantl |
⊢ ( ( ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ) ∧ 𝑐 = 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) → ( ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) → 𝑤 = ( 𝐹 ‘ 𝑐 ) ) ↔ ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) → 𝑤 = ( 𝐹 ‘ 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) ) ) ) |
59 |
54 58
|
mpbird |
⊢ ( ( ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ) ∧ 𝑐 = 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ) → ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) → 𝑤 = ( 𝐹 ‘ 𝑐 ) ) ) |
60 |
24 59
|
rspcimedv |
⊢ ( ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ∧ ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) ) → ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) → ∃ 𝑐 ∈ 𝐶 𝑤 = ( 𝐹 ‘ 𝑐 ) ) ) |
61 |
60
|
ex |
⊢ ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) → ( ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) → ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) → ∃ 𝑐 ∈ 𝐶 𝑤 = ( 𝐹 ‘ 𝑐 ) ) ) ) |
62 |
61
|
pm2.43b |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) → ( 〈 𝑓 , ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) → ∃ 𝑐 ∈ 𝐶 𝑤 = ( 𝐹 ‘ 𝑐 ) ) ) |
63 |
19 62
|
syl5bi |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) → ( 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) → ∃ 𝑐 ∈ 𝐶 𝑤 = ( 𝐹 ‘ 𝑐 ) ) ) |
64 |
63
|
exlimdv |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) → ( ∃ 𝑓 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑤 ++ 〈“ ( 𝑤 ‘ 0 ) ”〉 ) → ∃ 𝑐 ∈ 𝐶 𝑤 = ( 𝐹 ‘ 𝑐 ) ) ) |
65 |
18 64
|
sylbird |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) → ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) → ∃ 𝑐 ∈ 𝐶 𝑤 = ( 𝐹 ‘ 𝑐 ) ) ) |
66 |
65
|
3expib |
⊢ ( 𝐺 ∈ USPGraph → ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) → ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) → ∃ 𝑐 ∈ 𝐶 𝑤 = ( 𝐹 ‘ 𝑐 ) ) ) ) |
67 |
66
|
com23 |
⊢ ( 𝐺 ∈ USPGraph → ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) → ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) → ∃ 𝑐 ∈ 𝐶 𝑤 = ( 𝐹 ‘ 𝑐 ) ) ) ) |
68 |
67
|
imp |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ) → ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑤 ) ) → ∃ 𝑐 ∈ 𝐶 𝑤 = ( 𝐹 ‘ 𝑐 ) ) ) |
69 |
16 68
|
mpd |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ) → ∃ 𝑐 ∈ 𝐶 𝑤 = ( 𝐹 ‘ 𝑐 ) ) |
70 |
69
|
ralrimiva |
⊢ ( 𝐺 ∈ USPGraph → ∀ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∃ 𝑐 ∈ 𝐶 𝑤 = ( 𝐹 ‘ 𝑐 ) ) |
71 |
|
dffo3 |
⊢ ( 𝐹 : 𝐶 –onto→ ( ClWWalks ‘ 𝐺 ) ↔ ( 𝐹 : 𝐶 ⟶ ( ClWWalks ‘ 𝐺 ) ∧ ∀ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∃ 𝑐 ∈ 𝐶 𝑤 = ( 𝐹 ‘ 𝑐 ) ) ) |
72 |
3 70 71
|
sylanbrc |
⊢ ( 𝐺 ∈ USPGraph → 𝐹 : 𝐶 –onto→ ( ClWWalks ‘ 𝐺 ) ) |