Step |
Hyp |
Ref |
Expression |
1 |
|
clwlkclwwlkf.c |
⊢ 𝐶 = { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ 1 ≤ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) } |
2 |
|
simp3 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ∧ 〈 𝑓 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → 〈 𝑓 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) |
3 |
|
wrdlenccats1lenm1 |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) − 1 ) = ( ♯ ‘ 𝑊 ) ) |
4 |
3
|
eqcomd |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ♯ ‘ 𝑊 ) = ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) − 1 ) ) |
5 |
4
|
breq2d |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( 1 ≤ ( ♯ ‘ 𝑊 ) ↔ 1 ≤ ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) − 1 ) ) ) |
6 |
5
|
biimpa |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ) → 1 ≤ ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) − 1 ) ) |
7 |
6
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ∧ 〈 𝑓 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → 1 ≤ ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) − 1 ) ) |
8 |
|
df-br |
⊢ ( 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ↔ 〈 𝑓 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) |
9 |
|
clwlkiswlk |
⊢ ( 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) → 𝑓 ( Walks ‘ 𝐺 ) ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) |
10 |
|
wlklenvm1 |
⊢ ( 𝑓 ( Walks ‘ 𝐺 ) ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) → ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) − 1 ) ) |
11 |
9 10
|
syl |
⊢ ( 𝑓 ( ClWalks ‘ 𝐺 ) ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) → ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) − 1 ) ) |
12 |
8 11
|
sylbir |
⊢ ( 〈 𝑓 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) → ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) − 1 ) ) |
13 |
12
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ∧ 〈 𝑓 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → ( ♯ ‘ 𝑓 ) = ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) − 1 ) ) |
14 |
7 13
|
breqtrrd |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ∧ 〈 𝑓 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → 1 ≤ ( ♯ ‘ 𝑓 ) ) |
15 |
|
vex |
⊢ 𝑓 ∈ V |
16 |
|
ovex |
⊢ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ V |
17 |
15 16
|
op1std |
⊢ ( 𝑐 = 〈 𝑓 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 → ( 1st ‘ 𝑐 ) = 𝑓 ) |
18 |
17
|
fveq2d |
⊢ ( 𝑐 = 〈 𝑓 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 → ( ♯ ‘ ( 1st ‘ 𝑐 ) ) = ( ♯ ‘ 𝑓 ) ) |
19 |
18
|
breq2d |
⊢ ( 𝑐 = 〈 𝑓 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 → ( 1 ≤ ( ♯ ‘ ( 1st ‘ 𝑐 ) ) ↔ 1 ≤ ( ♯ ‘ 𝑓 ) ) ) |
20 |
|
2fveq3 |
⊢ ( 𝑤 = 𝑐 → ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = ( ♯ ‘ ( 1st ‘ 𝑐 ) ) ) |
21 |
20
|
breq2d |
⊢ ( 𝑤 = 𝑐 → ( 1 ≤ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) ↔ 1 ≤ ( ♯ ‘ ( 1st ‘ 𝑐 ) ) ) ) |
22 |
21
|
cbvrabv |
⊢ { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ 1 ≤ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) } = { 𝑐 ∈ ( ClWalks ‘ 𝐺 ) ∣ 1 ≤ ( ♯ ‘ ( 1st ‘ 𝑐 ) ) } |
23 |
1 22
|
eqtri |
⊢ 𝐶 = { 𝑐 ∈ ( ClWalks ‘ 𝐺 ) ∣ 1 ≤ ( ♯ ‘ ( 1st ‘ 𝑐 ) ) } |
24 |
19 23
|
elrab2 |
⊢ ( 〈 𝑓 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ 𝐶 ↔ ( 〈 𝑓 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑓 ) ) ) |
25 |
2 14 24
|
sylanbrc |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 1 ≤ ( ♯ ‘ 𝑊 ) ∧ 〈 𝑓 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ ( ClWalks ‘ 𝐺 ) ) → 〈 𝑓 , ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) 〉 ∈ 𝐶 ) |