| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							f1fn | 
							⊢ ( 𝐸 : dom  𝐸 –1-1→ 𝑅  →  𝐸  Fn  dom  𝐸 )  | 
						
						
							| 2 | 
							
								
							 | 
							dffn3 | 
							⊢ ( 𝐸  Fn  dom  𝐸  ↔  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							sylib | 
							⊢ ( 𝐸 : dom  𝐸 –1-1→ 𝑅  →  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  | 
						
						
							| 4 | 
							
								
							 | 
							lencl | 
							⊢ ( 𝐹  ∈  Word  dom  𝐸  →  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  | 
						
						
							| 5 | 
							
								
							 | 
							ffn | 
							⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  →  𝑃  Fn  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fnfz0hash | 
							⊢ ( ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  𝑃  Fn  ( 0 ... ( ♯ ‘ 𝐹 ) ) )  →  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  | 
						
						
							| 7 | 
							
								4 5 6
							 | 
							syl2an | 
							⊢ ( ( 𝐹  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  →  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							ffz0iswrd | 
							⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  →  𝑃  ∈  Word  𝑉 )  | 
						
						
							| 9 | 
							
								
							 | 
							lsw | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							ad6antr | 
							⊢ ( ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )  →  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fvoveq1 | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 )  →  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 )  +  1 )  −  1 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ad4antlr | 
							⊢ ( ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 )  +  1 )  −  1 ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  ↔  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  ( 𝑃 ‘ 0 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							nn0cn | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ♯ ‘ 𝐹 )  ∈  ℂ )  | 
						
						
							| 15 | 
							
								
							 | 
							1cnd | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  1  ∈  ℂ )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							pncand | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ( ( ♯ ‘ 𝐹 )  +  1 )  −  1 )  =  ( ♯ ‘ 𝐹 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eqcomd | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝐹 )  +  1 )  −  1 ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							ad4antlr | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( ♯ ‘ 𝐹 )  =  ( ( ( ♯ ‘ 𝐹 )  +  1 )  −  1 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							fveqeq2d | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  ( 𝑃 ‘ 0 )  ↔  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 )  +  1 )  −  1 ) )  =  ( 𝑃 ‘ 0 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							biimpd | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  ( 𝑃 ‘ 0 )  →  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 )  +  1 )  −  1 ) )  =  ( 𝑃 ‘ 0 ) ) )  | 
						
						
							| 21 | 
							
								13 20
							 | 
							biimtrid | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  →  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 )  +  1 )  −  1 ) )  =  ( 𝑃 ‘ 0 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							adantld | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 )  +  1 )  −  1 ) )  =  ( 𝑃 ‘ 0 ) ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							imp | 
							⊢ ( ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 )  +  1 )  −  1 ) )  =  ( 𝑃 ‘ 0 ) )  | 
						
						
							| 24 | 
							
								10 12 23
							 | 
							3eqtrd | 
							⊢ ( ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )  →  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 ) )  | 
						
						
							| 25 | 
							
								
							 | 
							nn0z | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ♯ ‘ 𝐹 )  ∈  ℤ )  | 
						
						
							| 26 | 
							
								
							 | 
							peano2zm | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℤ  →  ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ℤ )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							syl | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ℤ )  | 
						
						
							| 28 | 
							
								
							 | 
							nn0re | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ♯ ‘ 𝐹 )  ∈  ℝ )  | 
						
						
							| 29 | 
							
								28
							 | 
							lem1d | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝐹 )  −  1 )  ≤  ( ♯ ‘ 𝐹 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							eluz2 | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ↔  ( ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℤ  ∧  ( ( ♯ ‘ 𝐹 )  −  1 )  ≤  ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 31 | 
							
								27 25 29 30
							 | 
							syl3anbrc | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ♯ ‘ 𝐹 )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							ad4antlr | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( ♯ ‘ 𝐹 )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							fzoss2 | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) )  →  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							ssralv | 
							⊢ ( ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) )  | 
						
						
							| 35 | 
							
								32 33 34
							 | 
							3syl | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } ) )  | 
						
						
							| 36 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantr | 
							⊢ ( ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  ∧  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  | 
						
						
							| 38 | 
							
								
							 | 
							wrdf | 
							⊢ ( 𝐹  ∈  Word  dom  𝐸  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸 )  | 
						
						
							| 39 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸 )  | 
						
						
							| 40 | 
							
								
							 | 
							fzossrbm1 | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℤ  →  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 41 | 
							
								25 40
							 | 
							syl | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							adantl | 
							⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ⊆  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							sselda | 
							⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 44 | 
							
								39 43
							 | 
							ffvelcdmd | 
							⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( 𝐹 ‘ 𝑖 )  ∈  dom  𝐸 )  | 
						
						
							| 45 | 
							
								44
							 | 
							exp31 | 
							⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  →  ( 𝐹 ‘ 𝑖 )  ∈  dom  𝐸 ) ) )  | 
						
						
							| 46 | 
							
								38 45
							 | 
							syl | 
							⊢ ( 𝐹  ∈  Word  dom  𝐸  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  →  ( 𝐹 ‘ 𝑖 )  ∈  dom  𝐸 ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							adantl | 
							⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  →  ( 𝐹 ‘ 𝑖 )  ∈  dom  𝐸 ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							imp | 
							⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  ( 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  →  ( 𝐹 ‘ 𝑖 )  ∈  dom  𝐸 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) )  →  ( 𝐹 ‘ 𝑖 )  ∈  dom  𝐸 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							imp | 
							⊢ ( ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  ∧  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( 𝐹 ‘ 𝑖 )  ∈  dom  𝐸 )  | 
						
						
							| 51 | 
							
								37 50
							 | 
							ffvelcdmd | 
							⊢ ( ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  ∧  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  ran  𝐸 )  | 
						
						
							| 52 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ↔  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  =  ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							biimpi | 
							⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  →  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  =  ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							eleq1d | 
							⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  →  ( { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ↔  ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  ∈  ran  𝐸 ) )  | 
						
						
							| 55 | 
							
								51 54
							 | 
							syl5ibrcom | 
							⊢ ( ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  ∧  𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  →  ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  →  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							ralimdva | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 57 | 
							
								35 56
							 | 
							syldc | 
							⊢ ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  →  ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							adantr | 
							⊢ ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							impcom | 
							⊢ ( ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 )  | 
						
						
							| 60 | 
							
								
							 | 
							breq2 | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 )  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  ↔  2  ≤  ( ( ♯ ‘ 𝐹 )  +  1 ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							adantl | 
							⊢ ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  ↔  2  ≤  ( ( ♯ ‘ 𝐹 )  +  1 ) ) )  | 
						
						
							| 62 | 
							
								
							 | 
							2re | 
							⊢ 2  ∈  ℝ  | 
						
						
							| 63 | 
							
								62
							 | 
							a1i | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  2  ∈  ℝ )  | 
						
						
							| 64 | 
							
								
							 | 
							1red | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  1  ∈  ℝ )  | 
						
						
							| 65 | 
							
								63 64 28
							 | 
							lesubaddd | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ( 2  −  1 )  ≤  ( ♯ ‘ 𝐹 )  ↔  2  ≤  ( ( ♯ ‘ 𝐹 )  +  1 ) ) )  | 
						
						
							| 66 | 
							
								
							 | 
							2m1e1 | 
							⊢ ( 2  −  1 )  =  1  | 
						
						
							| 67 | 
							
								66
							 | 
							breq1i | 
							⊢ ( ( 2  −  1 )  ≤  ( ♯ ‘ 𝐹 )  ↔  1  ≤  ( ♯ ‘ 𝐹 ) )  | 
						
						
							| 68 | 
							
								
							 | 
							elnnnn0c | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  ∧  1  ≤  ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							simplbi2 | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 1  ≤  ( ♯ ‘ 𝐹 )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  | 
						
						
							| 70 | 
							
								67 69
							 | 
							biimtrid | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ( 2  −  1 )  ≤  ( ♯ ‘ 𝐹 )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  | 
						
						
							| 71 | 
							
								65 70
							 | 
							sylbird | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 2  ≤  ( ( ♯ ‘ 𝐹 )  +  1 )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							adantl | 
							⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  ( 2  ≤  ( ( ♯ ‘ 𝐹 )  +  1 )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							adantr | 
							⊢ ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  →  ( 2  ≤  ( ( ♯ ‘ 𝐹 )  +  1 )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  | 
						
						
							| 74 | 
							
								61 73
							 | 
							sylbid | 
							⊢ ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							imp | 
							⊢ ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ )  | 
						
						
							| 76 | 
							
								75
							 | 
							adantr | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ )  | 
						
						
							| 77 | 
							
								
							 | 
							lbfzo0 | 
							⊢ ( 0  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↔  ( ♯ ‘ 𝐹 )  ∈  ℕ )  | 
						
						
							| 78 | 
							
								76 77
							 | 
							sylibr | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 79 | 
							
								
							 | 
							fzoend | 
							⊢ ( 0  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 80 | 
							
								78 79
							 | 
							syl | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 81 | 
							
								
							 | 
							2fveq3 | 
							⊢ ( 𝑖  =  ( ( ♯ ‘ 𝐹 )  −  1 )  →  ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) )  | 
						
						
							| 82 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑖  =  ( ( ♯ ‘ 𝐹 )  −  1 )  →  ( 𝑃 ‘ 𝑖 )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  | 
						
						
							| 83 | 
							
								
							 | 
							fvoveq1 | 
							⊢ ( 𝑖  =  ( ( ♯ ‘ 𝐹 )  −  1 )  →  ( 𝑃 ‘ ( 𝑖  +  1 ) )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 )  −  1 )  +  1 ) ) )  | 
						
						
							| 84 | 
							
								82 83
							 | 
							preq12d | 
							⊢ ( 𝑖  =  ( ( ♯ ‘ 𝐹 )  −  1 )  →  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 )  −  1 )  +  1 ) ) } )  | 
						
						
							| 85 | 
							
								81 84
							 | 
							eqeq12d | 
							⊢ ( 𝑖  =  ( ( ♯ ‘ 𝐹 )  −  1 )  →  ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ↔  ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 )  −  1 )  +  1 ) ) } ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							adantl | 
							⊢ ( ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  ∧  𝑖  =  ( ( ♯ ‘ 𝐹 )  −  1 ) )  →  ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ↔  ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 )  −  1 )  +  1 ) ) } ) )  | 
						
						
							| 87 | 
							
								80 86
							 | 
							rspcdv | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  →  ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 )  −  1 )  +  1 ) ) } ) )  | 
						
						
							| 88 | 
							
								14 15
							 | 
							npcand | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ( ( ♯ ‘ 𝐹 )  −  1 )  +  1 )  =  ( ♯ ‘ 𝐹 ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							ad4antlr | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( ( ( ♯ ‘ 𝐹 )  −  1 )  +  1 )  =  ( ♯ ‘ 𝐹 ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							fveq2d | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 )  −  1 )  +  1 ) )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							preq2d | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 )  −  1 )  +  1 ) ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } )  | 
						
						
							| 92 | 
							
								91
							 | 
							eqeq2d | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 )  −  1 )  +  1 ) ) }  ↔  ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) )  | 
						
						
							| 93 | 
							
								38
							 | 
							ad4antlr | 
							⊢ ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom  𝐸 )  | 
						
						
							| 94 | 
							
								71
							 | 
							com12 | 
							⊢ ( 2  ≤  ( ( ♯ ‘ 𝐹 )  +  1 )  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  | 
						
						
							| 95 | 
							
								60 94
							 | 
							biimtrdi | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 )  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							com3r | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 )  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							adantl | 
							⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 )  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							imp31 | 
							⊢ ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ )  | 
						
						
							| 99 | 
							
								98 77
							 | 
							sylibr | 
							⊢ ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  0  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 100 | 
							
								99 79
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝐹 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 101 | 
							
								93 100
							 | 
							ffvelcdmd | 
							⊢ ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ∈  dom  𝐸 )  | 
						
						
							| 102 | 
							
								101
							 | 
							adantr | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) )  ∈  dom  𝐸 )  | 
						
						
							| 103 | 
							
								36 102
							 | 
							ffvelcdmd | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  ∈  ran  𝐸 )  | 
						
						
							| 104 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) }  ↔  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) }  =  ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							biimpi | 
							⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) }  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) }  =  ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							eleq1d | 
							⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) }  →  ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) }  ∈  ran  𝐸  ↔  ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  ∈  ran  𝐸 ) )  | 
						
						
							| 107 | 
							
								103 106
							 | 
							syl5ibrcom | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) }  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 108 | 
							
								92 107
							 | 
							sylbid | 
							⊢ ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) )  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 )  −  1 )  +  1 ) ) }  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 109 | 
							
								87 108
							 | 
							syldc | 
							⊢ ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  →  ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 110 | 
							
								109
							 | 
							adantr | 
							⊢ ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 111 | 
							
								110
							 | 
							impcom | 
							⊢ ( ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) }  ∈  ran  𝐸 )  | 
						
						
							| 112 | 
							
								
							 | 
							preq2 | 
							⊢ ( ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } )  | 
						
						
							| 113 | 
							
								112
							 | 
							eleq1d | 
							⊢ ( ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  →  ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸  ↔  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 114 | 
							
								113
							 | 
							adantl | 
							⊢ ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸  ↔  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 115 | 
							
								114
							 | 
							adantl | 
							⊢ ( ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )  →  ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸  ↔  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 116 | 
							
								111 115
							 | 
							mpbird | 
							⊢ ( ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 )  | 
						
						
							| 117 | 
							
								24 59 116
							 | 
							3jca | 
							⊢ ( ( ( ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐸 : dom  𝐸 ⟶ ran  𝐸 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 118 | 
							
								117
							 | 
							exp41 | 
							⊢ ( ( ( ( 𝑃  ∈  Word  𝑉  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 ) )  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( 𝐸 : dom  𝐸 ⟶ ran  𝐸  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) )  | 
						
						
							| 119 | 
							
								118
							 | 
							exp41 | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( 𝐹  ∈  Word  dom  𝐸  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 )  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( 𝐸 : dom  𝐸 ⟶ ran  𝐸  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) ) ) ) )  | 
						
						
							| 120 | 
							
								8 119
							 | 
							syl | 
							⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  →  ( 𝐹  ∈  Word  dom  𝐸  →  ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 )  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( 𝐸 : dom  𝐸 ⟶ ran  𝐸  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) ) ) ) )  | 
						
						
							| 121 | 
							
								120
							 | 
							com13 | 
							⊢ ( ( ♯ ‘ 𝐹 )  ∈  ℕ0  →  ( 𝐹  ∈  Word  dom  𝐸  →  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  →  ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 )  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( 𝐸 : dom  𝐸 ⟶ ran  𝐸  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) ) ) ) )  | 
						
						
							| 122 | 
							
								4 121
							 | 
							mpcom | 
							⊢ ( 𝐹  ∈  Word  dom  𝐸  →  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  →  ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 )  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( 𝐸 : dom  𝐸 ⟶ ran  𝐸  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) ) ) )  | 
						
						
							| 123 | 
							
								122
							 | 
							imp | 
							⊢ ( ( 𝐹  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  →  ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝐹 )  +  1 )  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( 𝐸 : dom  𝐸 ⟶ ran  𝐸  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) ) )  | 
						
						
							| 124 | 
							
								7 123
							 | 
							mpd | 
							⊢ ( ( 𝐹  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 )  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( 𝐸 : dom  𝐸 ⟶ ran  𝐸  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) )  | 
						
						
							| 125 | 
							
								124
							 | 
							expcom | 
							⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  →  ( 𝐹  ∈  Word  dom  𝐸  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( 𝐸 : dom  𝐸 ⟶ ran  𝐸  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) ) )  | 
						
						
							| 126 | 
							
								125
							 | 
							com14 | 
							⊢ ( 𝐸 : dom  𝐸 ⟶ ran  𝐸  →  ( 𝐹  ∈  Word  dom  𝐸  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) ) )  | 
						
						
							| 127 | 
							
								126
							 | 
							imp | 
							⊢ ( ( 𝐸 : dom  𝐸 ⟶ ran  𝐸  ∧  𝐹  ∈  Word  dom  𝐸 )  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) )  | 
						
						
							| 128 | 
							
								127
							 | 
							impcomd | 
							⊢ ( ( 𝐸 : dom  𝐸 ⟶ ran  𝐸  ∧  𝐹  ∈  Word  dom  𝐸 )  →  ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) )  | 
						
						
							| 129 | 
							
								3 128
							 | 
							sylan | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝐹  ∈  Word  dom  𝐸 )  →  ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) )  | 
						
						
							| 130 | 
							
								129
							 | 
							3imp | 
							⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝐹  ∈  Word  dom  𝐸 )  ∧  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝐹 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  |