Step |
Hyp |
Ref |
Expression |
1 |
|
f1fn |
⊢ ( 𝐸 : dom 𝐸 –1-1→ 𝑅 → 𝐸 Fn dom 𝐸 ) |
2 |
|
dffn3 |
⊢ ( 𝐸 Fn dom 𝐸 ↔ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) |
3 |
1 2
|
sylib |
⊢ ( 𝐸 : dom 𝐸 –1-1→ 𝑅 → 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) |
4 |
|
lencl |
⊢ ( 𝐹 ∈ Word dom 𝐸 → ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) |
5 |
|
ffn |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) |
6 |
|
fnfz0hash |
⊢ ( ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 𝑃 Fn ( 0 ... ( ♯ ‘ 𝐹 ) ) ) → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝐹 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) |
8 |
|
ffz0iswrd |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → 𝑃 ∈ Word 𝑉 ) |
9 |
|
lsw |
⊢ ( 𝑃 ∈ Word 𝑉 → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
10 |
9
|
ad6antr |
⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
11 |
|
fvoveq1 |
⊢ ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) ) |
12 |
11
|
ad4antlr |
⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 1 ) ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) ) |
13 |
|
eqcom |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 0 ) ) |
14 |
|
nn0cn |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℂ ) |
15 |
|
1cnd |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 1 ∈ ℂ ) |
16 |
14 15
|
pncand |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) = ( ♯ ‘ 𝐹 ) ) |
17 |
16
|
eqcomd |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) |
18 |
17
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ♯ ‘ 𝐹 ) = ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) |
19 |
18
|
fveqeq2d |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 0 ) ↔ ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
20 |
19
|
biimpd |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) = ( 𝑃 ‘ 0 ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
21 |
13 20
|
syl5bi |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
22 |
21
|
adantld |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) ) |
23 |
22
|
imp |
⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) + 1 ) − 1 ) ) = ( 𝑃 ‘ 0 ) ) |
24 |
10 12 23
|
3eqtrd |
⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ) |
25 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℤ ) |
26 |
|
peano2zm |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℤ ) |
27 |
25 26
|
syl |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℤ ) |
28 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℝ ) |
29 |
28
|
lem1d |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐹 ) − 1 ) ≤ ( ♯ ‘ 𝐹 ) ) |
30 |
|
eluz2 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ↔ ( ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐹 ) − 1 ) ≤ ( ♯ ‘ 𝐹 ) ) ) |
31 |
27 25 29 30
|
syl3anbrc |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
32 |
31
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
33 |
|
fzoss2 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
34 |
|
ssralv |
⊢ ( ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
35 |
32 33 34
|
3syl |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ) |
36 |
|
simpr |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) |
37 |
36
|
adantr |
⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) |
38 |
|
wrdf |
⊢ ( 𝐹 ∈ Word dom 𝐸 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ) |
39 |
|
simpll |
⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ) |
40 |
|
fzossrbm1 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℤ → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
41 |
25 40
|
syl |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
42 |
41
|
adantl |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ⊆ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
43 |
42
|
sselda |
⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
44 |
39 43
|
ffvelrnd |
⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝐸 ) |
45 |
44
|
exp31 |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝐸 ) ) ) |
46 |
38 45
|
syl |
⊢ ( 𝐹 ∈ Word dom 𝐸 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝐸 ) ) ) |
47 |
46
|
adantl |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝐸 ) ) ) |
48 |
47
|
imp |
⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝐸 ) ) |
49 |
48
|
ad3antrrr |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝐸 ) ) |
50 |
49
|
imp |
⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝐹 ‘ 𝑖 ) ∈ dom 𝐸 ) |
51 |
37 50
|
ffvelrnd |
⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ran 𝐸 ) |
52 |
|
eqcom |
⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
53 |
52
|
biimpi |
⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) ) |
54 |
53
|
eleq1d |
⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ↔ ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) ∈ ran 𝐸 ) ) |
55 |
51 54
|
syl5ibrcom |
⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) ) |
56 |
55
|
ralimdva |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) ) |
57 |
35 56
|
syldc |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) ) |
58 |
57
|
adantr |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) ) |
59 |
58
|
impcom |
⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) |
60 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) ↔ 2 ≤ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
61 |
60
|
adantl |
⊢ ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) ↔ 2 ≤ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
62 |
|
2re |
⊢ 2 ∈ ℝ |
63 |
62
|
a1i |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 2 ∈ ℝ ) |
64 |
|
1red |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → 1 ∈ ℝ ) |
65 |
63 64 28
|
lesubaddd |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 2 − 1 ) ≤ ( ♯ ‘ 𝐹 ) ↔ 2 ≤ ( ( ♯ ‘ 𝐹 ) + 1 ) ) ) |
66 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
67 |
66
|
breq1i |
⊢ ( ( 2 − 1 ) ≤ ( ♯ ‘ 𝐹 ) ↔ 1 ≤ ( ♯ ‘ 𝐹 ) ) |
68 |
|
elnnnn0c |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 ∧ 1 ≤ ( ♯ ‘ 𝐹 ) ) ) |
69 |
68
|
simplbi2 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 1 ≤ ( ♯ ‘ 𝐹 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
70 |
67 69
|
syl5bi |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( 2 − 1 ) ≤ ( ♯ ‘ 𝐹 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
71 |
65 70
|
sylbird |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 2 ≤ ( ( ♯ ‘ 𝐹 ) + 1 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( 2 ≤ ( ( ♯ ‘ 𝐹 ) + 1 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
73 |
72
|
adantr |
⊢ ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) → ( 2 ≤ ( ( ♯ ‘ 𝐹 ) + 1 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
74 |
61 73
|
sylbid |
⊢ ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
75 |
74
|
imp |
⊢ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
76 |
75
|
adantr |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
77 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
78 |
76 77
|
sylibr |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
79 |
|
fzoend |
⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
80 |
78 79
|
syl |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
81 |
|
2fveq3 |
⊢ ( 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
82 |
|
fveq2 |
⊢ ( 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 𝑃 ‘ 𝑖 ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) |
83 |
|
fvoveq1 |
⊢ ( 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( 𝑃 ‘ ( 𝑖 + 1 ) ) = ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) ) |
84 |
82 83
|
preq12d |
⊢ ( 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) → { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } ) |
85 |
81 84
|
eqeq12d |
⊢ ( 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } ) ) |
86 |
85
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ 𝑖 = ( ( ♯ ‘ 𝐹 ) − 1 ) ) → ( ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ↔ ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } ) ) |
87 |
80 86
|
rspcdv |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } ) ) |
88 |
14 15
|
npcand |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) = ( ♯ ‘ 𝐹 ) ) |
89 |
88
|
ad4antlr |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) = ( ♯ ‘ 𝐹 ) ) |
90 |
89
|
fveq2d |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) |
91 |
90
|
preq2d |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) |
92 |
91
|
eqeq2d |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } ↔ ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) ) |
93 |
38
|
ad4antlr |
⊢ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ dom 𝐸 ) |
94 |
71
|
com12 |
⊢ ( 2 ≤ ( ( ♯ ‘ 𝐹 ) + 1 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
95 |
60 94
|
syl6bi |
⊢ ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
96 |
95
|
com3r |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
97 |
96
|
adantl |
⊢ ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
98 |
97
|
imp31 |
⊢ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
99 |
98 77
|
sylibr |
⊢ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
100 |
99 79
|
syl |
⊢ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝐹 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
101 |
93 100
|
ffvelrnd |
⊢ ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ∈ dom 𝐸 ) |
102 |
101
|
adantr |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ∈ dom 𝐸 ) |
103 |
36 102
|
ffvelrnd |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ ran 𝐸 ) |
104 |
|
eqcom |
⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } = ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
105 |
104
|
biimpi |
⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } = ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ) |
106 |
105
|
eleq1d |
⊢ ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } → ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ↔ ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) ∈ ran 𝐸 ) ) |
107 |
103 106
|
syl5ibrcom |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ) ) |
108 |
92 107
|
sylbid |
⊢ ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → ( ( 𝐸 ‘ ( 𝐹 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) ) = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ( ( ♯ ‘ 𝐹 ) − 1 ) + 1 ) ) } → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ) ) |
109 |
87 108
|
syldc |
⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } → ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ) ) |
110 |
109
|
adantr |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ) ) |
111 |
110
|
impcom |
⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ) |
112 |
|
preq2 |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ) |
113 |
112
|
eleq1d |
⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) → ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ) ) |
114 |
113
|
adantl |
⊢ ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ) ) |
115 |
114
|
adantl |
⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) } ∈ ran 𝐸 ) ) |
116 |
111 115
|
mpbird |
⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) |
117 |
24 59 116
|
3jca |
⊢ ( ( ( ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ 𝐸 : dom 𝐸 ⟶ ran 𝐸 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) |
118 |
117
|
exp41 |
⊢ ( ( ( ( 𝑃 ∈ Word 𝑉 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) |
119 |
118
|
exp41 |
⊢ ( 𝑃 ∈ Word 𝑉 → ( 𝐹 ∈ Word dom 𝐸 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) ) ) |
120 |
8 119
|
syl |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝐹 ∈ Word dom 𝐸 → ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) ) ) |
121 |
120
|
com13 |
⊢ ( ( ♯ ‘ 𝐹 ) ∈ ℕ0 → ( 𝐹 ∈ Word dom 𝐸 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) ) ) |
122 |
4 121
|
mpcom |
⊢ ( 𝐹 ∈ Word dom 𝐸 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) ) |
123 |
122
|
imp |
⊢ ( ( 𝐹 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝐹 ) + 1 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) |
124 |
7 123
|
mpd |
⊢ ( ( 𝐹 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) |
125 |
124
|
expcom |
⊢ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( 𝐹 ∈ Word dom 𝐸 → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) |
126 |
125
|
com14 |
⊢ ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 → ( 𝐹 ∈ Word dom 𝐸 → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) |
127 |
126
|
imp |
⊢ ( ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 ∧ 𝐹 ∈ Word dom 𝐸 ) → ( 2 ≤ ( ♯ ‘ 𝑃 ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) |
128 |
127
|
impcomd |
⊢ ( ( 𝐸 : dom 𝐸 ⟶ ran 𝐸 ∧ 𝐹 ∈ Word dom 𝐸 ) → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) |
129 |
3 128
|
sylan |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝐹 ∈ Word dom 𝐸 ) → ( ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) |
130 |
129
|
3imp |
⊢ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝐹 ∈ Word dom 𝐸 ) ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( 𝐸 ‘ ( 𝐹 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐹 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝐹 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) |