Step |
Hyp |
Ref |
Expression |
1 |
|
clwlkclwwlklem2.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↦ if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) ) |
2 |
|
lencl |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
3 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℤ ) |
4 |
3
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℤ ) |
5 |
|
0red |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 0 ∈ ℝ ) |
6 |
|
2re |
⊢ 2 ∈ ℝ |
7 |
6
|
a1i |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 2 ∈ ℝ ) |
8 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℝ ) |
9 |
8
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℝ ) |
10 |
|
2pos |
⊢ 0 < 2 |
11 |
10
|
a1i |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 0 < 2 ) |
12 |
|
simpr |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
13 |
5 7 9 11 12
|
ltletrd |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 0 < ( ♯ ‘ 𝑃 ) ) |
14 |
|
elnnz |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝑃 ) ∈ ℤ ∧ 0 < ( ♯ ‘ 𝑃 ) ) ) |
15 |
4 13 14
|
sylanbrc |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℕ ) |
16 |
2 15
|
sylan |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝑃 ) ∈ ℕ ) |
17 |
|
nnm1nn0 |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ0 ) |
18 |
16 17
|
syl |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ0 ) |
19 |
|
fvex |
⊢ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) ∈ V |
20 |
|
fvex |
⊢ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ∈ V |
21 |
19 20
|
ifex |
⊢ if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) ∈ V |
22 |
21 1
|
fnmpti |
⊢ 𝐹 Fn ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
23 |
|
ffzo0hash |
⊢ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℕ0 ∧ 𝐹 Fn ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) → ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
24 |
18 22 23
|
sylancl |
⊢ ( ( 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ♯ ‘ 𝐹 ) = ( ( ♯ ‘ 𝑃 ) − 1 ) ) |