| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							clwlkclwwlklem2.f | 
							⊢ 𝐹  =  ( 𝑥  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↦  if ( 𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							lsw | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  | 
						
						
							| 4 | 
							
								1
							 | 
							clwlkclwwlklem2a2 | 
							⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝐹 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							eqcomd | 
							⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  ( ♯ ‘ 𝐹 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							fveq2d | 
							⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							eqtr2d | 
							⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) )  =  ( lastS ‘ 𝑃 ) )  |