| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							clwlkclwwlklem2.f | 
							⊢ 𝐹  =  ( 𝑥  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↦  if ( 𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 𝐹 ‘ 𝐼 )  =  ( 𝐹 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							lencl | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  | 
						
						
							| 4 | 
							
								1
							 | 
							clwlkclwwlklem2fv2 | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝐹 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							sylan | 
							⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝐹 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } ) )  | 
						
						
							| 6 | 
							
								2 5
							 | 
							sylan9eqr | 
							⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( 𝐹 ‘ 𝐼 )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							ex | 
							⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 𝐹 ‘ 𝐼 )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							3adant1 | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 𝐹 ‘ 𝐼 )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 )  →  ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 𝐹 ‘ 𝐼 )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							impcom | 
							⊢ ( ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ∧  ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 ) )  →  ( 𝐹 ‘ 𝐼 )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							fveq2d | 
							⊢ ( ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ∧  ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 ) )  →  ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) )  =  ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							f1f1orn | 
							⊢ ( 𝐸 : dom  𝐸 –1-1→ 𝑅  →  𝐸 : dom  𝐸 –1-1-onto→ ran  𝐸 )  | 
						
						
							| 13 | 
							
								12
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  𝐸 : dom  𝐸 –1-1-onto→ ran  𝐸 )  | 
						
						
							| 14 | 
							
								13
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 )  →  𝐸 : dom  𝐸 –1-1-onto→ ran  𝐸 )  | 
						
						
							| 15 | 
							
								
							 | 
							lsw | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							eqeq1d | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ↔  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ 0 ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							nn0cn | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ♯ ‘ 𝑃 )  ∈  ℂ )  | 
						
						
							| 18 | 
							
								
							 | 
							id | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℂ  →  ( ♯ ‘ 𝑃 )  ∈  ℂ )  | 
						
						
							| 19 | 
							
								
							 | 
							2cnd | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℂ  →  2  ∈  ℂ )  | 
						
						
							| 20 | 
							
								
							 | 
							1cnd | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℂ  →  1  ∈  ℂ )  | 
						
						
							| 21 | 
							
								18 19 20
							 | 
							subsubd | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℂ  →  ( ( ♯ ‘ 𝑃 )  −  ( 2  −  1 ) )  =  ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  | 
						
						
							| 22 | 
							
								
							 | 
							2m1e1 | 
							⊢ ( 2  −  1 )  =  1  | 
						
						
							| 23 | 
							
								22
							 | 
							a1i | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℂ  →  ( 2  −  1 )  =  1 )  | 
						
						
							| 24 | 
							
								23
							 | 
							oveq2d | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℂ  →  ( ( ♯ ‘ 𝑃 )  −  ( 2  −  1 ) )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) )  | 
						
						
							| 25 | 
							
								21 24
							 | 
							eqtr3d | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℂ  →  ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) )  | 
						
						
							| 26 | 
							
								3 17 25
							 | 
							3syl | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantr | 
							⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ 0 ) )  →  ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 )  =  ( ( ♯ ‘ 𝑃 )  −  1 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							fveq2d | 
							⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ 0 ) )  →  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							eqeq2 | 
							⊢ ( ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  →  ( ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( 𝑃 ‘ 0 )  ↔  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							eqcoms | 
							⊢ ( ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ 0 )  →  ( ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( 𝑃 ‘ 0 )  ↔  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantl | 
							⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ 0 ) )  →  ( ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( 𝑃 ‘ 0 )  ↔  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  | 
						
						
							| 32 | 
							
								28 31
							 | 
							mpbird | 
							⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ 0 ) )  →  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( 𝑃 ‘ 0 ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							ex | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ 0 )  →  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( 𝑃 ‘ 0 ) ) )  | 
						
						
							| 34 | 
							
								16 33
							 | 
							sylbid | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  →  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( 𝑃 ‘ 0 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  →  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( 𝑃 ‘ 0 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							com12 | 
							⊢ ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  →  ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( 𝑃 ‘ 0 ) ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantr | 
							⊢ ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  →  ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( 𝑃 ‘ 0 ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							impcom | 
							⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  →  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( 𝑃 ‘ 0 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  =  ( 𝑃 ‘ 0 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							preq2d | 
							⊢ ( ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } )  | 
						
						
							| 41 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 𝑃 ‘ 𝐼 )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							fvoveq1 | 
							⊢ ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 𝑃 ‘ ( 𝐼  +  1 ) )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							preq12d | 
							⊢ ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) } )  | 
						
						
							| 44 | 
							
								43
							 | 
							eqeq1d | 
							⊢ ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ↔  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							adantl | 
							⊢ ( ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ↔  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } ) )  | 
						
						
							| 46 | 
							
								40 45
							 | 
							mpbird | 
							⊢ ( ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } )  | 
						
						
							| 47 | 
							
								46
							 | 
							eleq1d | 
							⊢ ( ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸  ↔  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							biimpd | 
							⊢ ( ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							impancom | 
							⊢ ( ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 )  →  ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							impcom | 
							⊢ ( ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ∧  ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 ) )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 )  | 
						
						
							| 51 | 
							
								
							 | 
							f1ocnvfv2 | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1-onto→ ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 )  →  ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } ) )  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } )  | 
						
						
							| 52 | 
							
								14 50 51
							 | 
							syl2an2 | 
							⊢ ( ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ∧  ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 ) )  →  ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } ) )  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } )  | 
						
						
							| 53 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ 0 )  ↔  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							biimpi | 
							⊢ ( ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ 0 )  →  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  | 
						
						
							| 55 | 
							
								
							 | 
							1e2m1 | 
							⊢ 1  =  ( 2  −  1 )  | 
						
						
							| 56 | 
							
								55
							 | 
							a1i | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  1  =  ( 2  −  1 ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							oveq2d | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  ( ( ♯ ‘ 𝑃 )  −  ( 2  −  1 ) ) )  | 
						
						
							| 58 | 
							
								3 17
							 | 
							syl | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( ♯ ‘ 𝑃 )  ∈  ℂ )  | 
						
						
							| 59 | 
							
								
							 | 
							2cnd | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  2  ∈  ℂ )  | 
						
						
							| 60 | 
							
								
							 | 
							1cnd | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  1  ∈  ℂ )  | 
						
						
							| 61 | 
							
								58 59 60
							 | 
							subsubd | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑃 )  −  ( 2  −  1 ) )  =  ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  | 
						
						
							| 62 | 
							
								57 61
							 | 
							eqtrd | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							fveq2d | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) )  | 
						
						
							| 64 | 
							
								54 63
							 | 
							sylan9eqr | 
							⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ 0 ) )  →  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							ex | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 𝑃 ‘ 0 )  →  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) ) )  | 
						
						
							| 66 | 
							
								16 65
							 | 
							sylbid | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  →  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							imp | 
							⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 ) )  →  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							preq2d | 
							⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 ) )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) } )  | 
						
						
							| 69 | 
							
								68
							 | 
							adantr | 
							⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 ) )  ∧  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) } )  | 
						
						
							| 70 | 
							
								43
							 | 
							adantl | 
							⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 ) )  ∧  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ ( ( ( ♯ ‘ 𝑃 )  −  2 )  +  1 ) ) } )  | 
						
						
							| 71 | 
							
								69 70
							 | 
							eqtr4d | 
							⊢ ( ( ( 𝑃  ∈  Word  𝑉  ∧  ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 ) )  ∧  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } )  | 
						
						
							| 72 | 
							
								71
							 | 
							exp31 | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  →  ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  →  ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							com12 | 
							⊢ ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  →  ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							adantr | 
							⊢ ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  →  ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							impcom | 
							⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  →  ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 )  →  ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							impcom | 
							⊢ ( ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ∧  ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 ) )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } )  | 
						
						
							| 79 | 
							
								11 52 78
							 | 
							3eqtrd | 
							⊢ ( ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ∧  ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 ) )  →  ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) )  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } )  | 
						
						
							| 80 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  | 
						
						
							| 81 | 
							
								
							 | 
							oveq1 | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  2  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  ( 2  −  1 ) )  | 
						
						
							| 82 | 
							
								81 22
							 | 
							eqtrdi | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  2  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  1 )  | 
						
						
							| 83 | 
							
								82
							 | 
							oveq2d | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  2  →  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  =  ( 0 ..^ 1 ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							eleq2d | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  2  →  ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↔  𝐼  ∈  ( 0 ..^ 1 ) ) )  | 
						
						
							| 85 | 
							
								
							 | 
							oveq1 | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  2  →  ( ( ♯ ‘ 𝑃 )  −  2 )  =  ( 2  −  2 ) )  | 
						
						
							| 86 | 
							
								
							 | 
							2cn | 
							⊢ 2  ∈  ℂ  | 
						
						
							| 87 | 
							
								86
							 | 
							subidi | 
							⊢ ( 2  −  2 )  =  0  | 
						
						
							| 88 | 
							
								85 87
							 | 
							eqtrdi | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  2  →  ( ( ♯ ‘ 𝑃 )  −  2 )  =  0 )  | 
						
						
							| 89 | 
							
								88
							 | 
							eqeq2d | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  2  →  ( 𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ↔  𝐼  =  0 ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							notbid | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  2  →  ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ↔  ¬  𝐼  =  0 ) )  | 
						
						
							| 91 | 
							
								84 90
							 | 
							anbi12d | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  2  →  ( ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  ↔  ( 𝐼  ∈  ( 0 ..^ 1 )  ∧  ¬  𝐼  =  0 ) ) )  | 
						
						
							| 92 | 
							
								
							 | 
							elsni | 
							⊢ ( 𝐼  ∈  { 0 }  →  𝐼  =  0 )  | 
						
						
							| 93 | 
							
								92
							 | 
							pm2.24d | 
							⊢ ( 𝐼  ∈  { 0 }  →  ( ¬  𝐼  =  0  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) )  | 
						
						
							| 94 | 
							
								
							 | 
							fzo01 | 
							⊢ ( 0 ..^ 1 )  =  { 0 }  | 
						
						
							| 95 | 
							
								93 94
							 | 
							eleq2s | 
							⊢ ( 𝐼  ∈  ( 0 ..^ 1 )  →  ( ¬  𝐼  =  0  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							imp | 
							⊢ ( ( 𝐼  ∈  ( 0 ..^ 1 )  ∧  ¬  𝐼  =  0 )  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 97 | 
							
								91 96
							 | 
							biimtrdi | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  2  →  ( ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							adantld | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  2  →  ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) )  | 
						
						
							| 99 | 
							
								
							 | 
							df-ne | 
							⊢ ( ( ♯ ‘ 𝑃 )  ≠  2  ↔  ¬  ( ♯ ‘ 𝑃 )  =  2 )  | 
						
						
							| 100 | 
							
								
							 | 
							2re | 
							⊢ 2  ∈  ℝ  | 
						
						
							| 101 | 
							
								100
							 | 
							a1i | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  2  ∈  ℝ )  | 
						
						
							| 102 | 
							
								
							 | 
							nn0re | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ♯ ‘ 𝑃 )  ∈  ℝ )  | 
						
						
							| 103 | 
							
								102
							 | 
							adantr | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝑃 )  ∈  ℝ )  | 
						
						
							| 104 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  2  ≤  ( ♯ ‘ 𝑃 ) )  | 
						
						
							| 105 | 
							
								101 103 104
							 | 
							leltned | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 2  <  ( ♯ ‘ 𝑃 )  ↔  ( ♯ ‘ 𝑃 )  ≠  2 ) )  | 
						
						
							| 106 | 
							
								
							 | 
							elfzo0 | 
							⊢ ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↔  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  | 
						
						
							| 107 | 
							
								
							 | 
							simp-4l | 
							⊢ ( ( ( ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  ∧  2  <  ( ♯ ‘ 𝑃 ) )  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 ) )  →  𝐼  ∈  ℕ0 )  | 
						
						
							| 108 | 
							
								
							 | 
							nn0z | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ♯ ‘ 𝑃 )  ∈  ℤ )  | 
						
						
							| 109 | 
							
								
							 | 
							2z | 
							⊢ 2  ∈  ℤ  | 
						
						
							| 110 | 
							
								109
							 | 
							a1i | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  2  ∈  ℤ )  | 
						
						
							| 111 | 
							
								108 110
							 | 
							zsubcld | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ )  | 
						
						
							| 112 | 
							
								111
							 | 
							adantr | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  <  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ )  | 
						
						
							| 113 | 
							
								100
							 | 
							a1i | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  2  ∈  ℝ )  | 
						
						
							| 114 | 
							
								113 102
							 | 
							posdifd | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( 2  <  ( ♯ ‘ 𝑃 )  ↔  0  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 115 | 
							
								114
							 | 
							biimpa | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  <  ( ♯ ‘ 𝑃 ) )  →  0  <  ( ( ♯ ‘ 𝑃 )  −  2 ) )  | 
						
						
							| 116 | 
							
								
							 | 
							elnnz | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ↔  ( ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ  ∧  0  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 117 | 
							
								112 115 116
							 | 
							sylanbrc | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  <  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ )  | 
						
						
							| 118 | 
							
								117
							 | 
							ad5ant24 | 
							⊢ ( ( ( ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  ∧  2  <  ( ♯ ‘ 𝑃 ) )  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 ) )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ )  | 
						
						
							| 119 | 
							
								
							 | 
							nn0z | 
							⊢ ( 𝐼  ∈  ℕ0  →  𝐼  ∈  ℤ )  | 
						
						
							| 120 | 
							
								
							 | 
							peano2zm | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℤ  →  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℤ )  | 
						
						
							| 121 | 
							
								108 120
							 | 
							syl | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℤ )  | 
						
						
							| 122 | 
							
								
							 | 
							zltlem1 | 
							⊢ ( ( 𝐼  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℤ )  →  ( 𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 )  ↔  𝐼  ≤  ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  1 ) ) )  | 
						
						
							| 123 | 
							
								119 121 122
							 | 
							syl2an | 
							⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( 𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 )  ↔  𝐼  ≤  ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  1 ) ) )  | 
						
						
							| 124 | 
							
								17
							 | 
							adantl | 
							⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( ♯ ‘ 𝑃 )  ∈  ℂ )  | 
						
						
							| 125 | 
							
								
							 | 
							1cnd | 
							⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  1  ∈  ℂ )  | 
						
						
							| 126 | 
							
								124 125 125
							 | 
							subsub4d | 
							⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  1 )  =  ( ( ♯ ‘ 𝑃 )  −  ( 1  +  1 ) ) )  | 
						
						
							| 127 | 
							
								
							 | 
							1p1e2 | 
							⊢ ( 1  +  1 )  =  2  | 
						
						
							| 128 | 
							
								127
							 | 
							a1i | 
							⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( 1  +  1 )  =  2 )  | 
						
						
							| 129 | 
							
								128
							 | 
							oveq2d | 
							⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( ( ♯ ‘ 𝑃 )  −  ( 1  +  1 ) )  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  | 
						
						
							| 130 | 
							
								126 129
							 | 
							eqtrd | 
							⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  1 )  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  | 
						
						
							| 131 | 
							
								130
							 | 
							breq2d | 
							⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( 𝐼  ≤  ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  1 )  ↔  𝐼  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 132 | 
							
								123 131
							 | 
							bitrd | 
							⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( 𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 )  ↔  𝐼  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 133 | 
							
								
							 | 
							necom | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  −  2 )  ≠  𝐼  ↔  𝐼  ≠  ( ( ♯ ‘ 𝑃 )  −  2 ) )  | 
						
						
							| 134 | 
							
								
							 | 
							df-ne | 
							⊢ ( 𝐼  ≠  ( ( ♯ ‘ 𝑃 )  −  2 )  ↔  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  | 
						
						
							| 135 | 
							
								133 134
							 | 
							bitr2i | 
							⊢ ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ↔  ( ( ♯ ‘ 𝑃 )  −  2 )  ≠  𝐼 )  | 
						
						
							| 136 | 
							
								
							 | 
							nn0re | 
							⊢ ( 𝐼  ∈  ℕ0  →  𝐼  ∈  ℝ )  | 
						
						
							| 137 | 
							
								136
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  𝐼  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  𝐼  ∈  ℝ )  | 
						
						
							| 138 | 
							
								102 113
							 | 
							resubcld | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℝ )  | 
						
						
							| 139 | 
							
								138
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  𝐼  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℝ )  | 
						
						
							| 140 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  𝐼  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  𝐼  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) )  | 
						
						
							| 141 | 
							
								
							 | 
							leltne | 
							⊢ ( ( 𝐼  ∈  ℝ  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℝ  ∧  𝐼  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( 𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 )  ↔  ( ( ♯ ‘ 𝑃 )  −  2 )  ≠  𝐼 ) )  | 
						
						
							| 142 | 
							
								141
							 | 
							bicomd | 
							⊢ ( ( 𝐼  ∈  ℝ  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℝ  ∧  𝐼  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( ( ( ♯ ‘ 𝑃 )  −  2 )  ≠  𝐼  ↔  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 143 | 
							
								137 139 140 142
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  𝐼  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( ( ( ♯ ‘ 𝑃 )  −  2 )  ≠  𝐼  ↔  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 144 | 
							
								143
							 | 
							biimpd | 
							⊢ ( ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  𝐼  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( ( ( ♯ ‘ 𝑃 )  −  2 )  ≠  𝐼  →  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 145 | 
							
								135 144
							 | 
							biimtrid | 
							⊢ ( ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  𝐼  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 146 | 
							
								145
							 | 
							ex | 
							⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( 𝐼  ≤  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) )  | 
						
						
							| 147 | 
							
								132 146
							 | 
							sylbid | 
							⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( 𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 )  →  ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) )  | 
						
						
							| 148 | 
							
								147
							 | 
							com23 | 
							⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 )  →  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) )  | 
						
						
							| 149 | 
							
								148
							 | 
							imp | 
							⊢ ( ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( 𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 )  →  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 150 | 
							
								149
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  ∧  2  <  ( ♯ ‘ 𝑃 ) )  →  ( 𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 )  →  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 151 | 
							
								150
							 | 
							imp | 
							⊢ ( ( ( ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  ∧  2  <  ( ♯ ‘ 𝑃 ) )  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 ) )  →  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) )  | 
						
						
							| 152 | 
							
								107 118 151
							 | 
							3jca | 
							⊢ ( ( ( ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  ∧  2  <  ( ♯ ‘ 𝑃 ) )  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 ) )  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 153 | 
							
								152
							 | 
							ex | 
							⊢ ( ( ( ( 𝐼  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  ∧  2  <  ( ♯ ‘ 𝑃 ) )  →  ( 𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 )  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) )  | 
						
						
							| 154 | 
							
								153
							 | 
							exp41 | 
							⊢ ( 𝐼  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 2  <  ( ♯ ‘ 𝑃 )  →  ( 𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 )  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) ) ) )  | 
						
						
							| 155 | 
							
								154
							 | 
							com25 | 
							⊢ ( 𝐼  ∈  ℕ0  →  ( 𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 )  →  ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 2  <  ( ♯ ‘ 𝑃 )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) ) ) )  | 
						
						
							| 156 | 
							
								155
							 | 
							imp | 
							⊢ ( ( 𝐼  ∈  ℕ0  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 ) )  →  ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 2  <  ( ♯ ‘ 𝑃 )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) ) )  | 
						
						
							| 157 | 
							
								156
							 | 
							3adant2 | 
							⊢ ( ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  1 ) )  →  ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 2  <  ( ♯ ‘ 𝑃 )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) ) )  | 
						
						
							| 158 | 
							
								106 157
							 | 
							sylbi | 
							⊢ ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  →  ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 2  <  ( ♯ ‘ 𝑃 )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) ) )  | 
						
						
							| 159 | 
							
								158
							 | 
							imp | 
							⊢ ( ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( 2  <  ( ♯ ‘ 𝑃 )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) )  | 
						
						
							| 160 | 
							
								159
							 | 
							com13 | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( 2  <  ( ♯ ‘ 𝑃 )  →  ( ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) )  | 
						
						
							| 161 | 
							
								160
							 | 
							adantr | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 2  <  ( ♯ ‘ 𝑃 )  →  ( ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) )  | 
						
						
							| 162 | 
							
								105 161
							 | 
							sylbird | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  ≠  2  →  ( ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) )  | 
						
						
							| 163 | 
							
								99 162
							 | 
							biimtrrid | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ¬  ( ♯ ‘ 𝑃 )  =  2  →  ( ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) )  | 
						
						
							| 164 | 
							
								163
							 | 
							com23 | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( ¬  ( ♯ ‘ 𝑃 )  =  2  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) )  | 
						
						
							| 165 | 
							
								164
							 | 
							imp | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  ( ¬  ( ♯ ‘ 𝑃 )  =  2  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) )  | 
						
						
							| 166 | 
							
								165
							 | 
							com12 | 
							⊢ ( ¬  ( ♯ ‘ 𝑃 )  =  2  →  ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) )  | 
						
						
							| 167 | 
							
								98 166
							 | 
							pm2.61i | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 168 | 
							
								
							 | 
							elfzo0 | 
							⊢ ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) )  ↔  ( 𝐼  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ  ∧  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 169 | 
							
								167 168
							 | 
							sylibr | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 170 | 
							
								80 169
							 | 
							jca | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) )  | 
						
						
							| 171 | 
							
								170
							 | 
							exp31 | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) ) )  | 
						
						
							| 172 | 
							
								3 171
							 | 
							syl | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( 2  ≤  ( ♯ ‘ 𝑃 )  →  ( ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) ) )  | 
						
						
							| 173 | 
							
								172
							 | 
							imp | 
							⊢ ( ( 𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) )  | 
						
						
							| 174 | 
							
								173
							 | 
							3adant1 | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ∧  ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) )  | 
						
						
							| 175 | 
							
								174
							 | 
							expd | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  →  ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) ) )  | 
						
						
							| 176 | 
							
								175
							 | 
							com12 | 
							⊢ ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  →  ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) ) )  | 
						
						
							| 177 | 
							
								176
							 | 
							adantl | 
							⊢ ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  →  ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) ) )  | 
						
						
							| 178 | 
							
								177
							 | 
							impcom | 
							⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  →  ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) )  | 
						
						
							| 179 | 
							
								178
							 | 
							adantr | 
							⊢ ( ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 )  →  ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) ) )  | 
						
						
							| 180 | 
							
								179
							 | 
							impcom | 
							⊢ ( ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ∧  ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 ) )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) )  | 
						
						
							| 181 | 
							
								1
							 | 
							clwlkclwwlklem2fv1 | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  ( 𝐹 ‘ 𝐼 )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) )  | 
						
						
							| 182 | 
							
								180 181
							 | 
							syl | 
							⊢ ( ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ∧  ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 ) )  →  ( 𝐹 ‘ 𝐼 )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) )  | 
						
						
							| 183 | 
							
								182
							 | 
							fveq2d | 
							⊢ ( ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ∧  ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 ) )  →  ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) )  =  ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) ) )  | 
						
						
							| 184 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ∧  ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 ) )  →  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 )  | 
						
						
							| 185 | 
							
								
							 | 
							f1ocnvfv2 | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1-onto→ ran  𝐸  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 )  →  ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) )  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } )  | 
						
						
							| 186 | 
							
								14 184 185
							 | 
							syl2an2 | 
							⊢ ( ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ∧  ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 ) )  →  ( 𝐸 ‘ ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) )  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } )  | 
						
						
							| 187 | 
							
								183 186
							 | 
							eqtrd | 
							⊢ ( ( ¬  𝐼  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ∧  ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 ) )  →  ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) )  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } )  | 
						
						
							| 188 | 
							
								79 187
							 | 
							pm2.61ian | 
							⊢ ( ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) ) )  ∧  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸 )  →  ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) )  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } )  | 
						
						
							| 189 | 
							
								188
							 | 
							exp31 | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  →  ( { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) }  ∈  ran  𝐸  →  ( 𝐸 ‘ ( 𝐹 ‘ 𝐼 ) )  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) ) )  |