| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							clwlkclwwlklem2.f | 
							⊢ 𝐹  =  ( 𝑥  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↦  if ( 𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							breq1 | 
							⊢ ( 𝑥  =  𝐼  →  ( 𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 )  ↔  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  𝐼  →  ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ 𝐼 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fvoveq1 | 
							⊢ ( 𝑥  =  𝐼  →  ( 𝑃 ‘ ( 𝑥  +  1 ) )  =  ( 𝑃 ‘ ( 𝐼  +  1 ) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							preq12d | 
							⊢ ( 𝑥  =  𝐼  →  { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) }  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } )  | 
						
						
							| 6 | 
							
								5
							 | 
							fveq2d | 
							⊢ ( 𝑥  =  𝐼  →  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) )  | 
						
						
							| 7 | 
							
								3
							 | 
							preq1d | 
							⊢ ( 𝑥  =  𝐼  →  { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ 0 ) } )  | 
						
						
							| 8 | 
							
								7
							 | 
							fveq2d | 
							⊢ ( 𝑥  =  𝐼  →  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ 0 ) } ) )  | 
						
						
							| 9 | 
							
								2 6 8
							 | 
							ifbieq12d | 
							⊢ ( 𝑥  =  𝐼  →  if ( 𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } ) )  =  if ( 𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ 0 ) } ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							elfzolt2 | 
							⊢ ( 𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantl | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							iftrued | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  if ( 𝐼  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ 0 ) } ) )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							sylan9eqr | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  ∧  𝑥  =  𝐼 )  →  if ( 𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } ) )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) )  | 
						
						
							| 14 | 
							
								
							 | 
							nn0z | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ♯ ‘ 𝑃 )  ∈  ℤ )  | 
						
						
							| 15 | 
							
								
							 | 
							2z | 
							⊢ 2  ∈  ℤ  | 
						
						
							| 16 | 
							
								15
							 | 
							a1i | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  2  ∈  ℤ )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							zsubcld | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ )  | 
						
						
							| 18 | 
							
								
							 | 
							peano2zm | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℤ  →  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℤ )  | 
						
						
							| 19 | 
							
								14 18
							 | 
							syl | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℤ )  | 
						
						
							| 20 | 
							
								
							 | 
							1red | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  1  ∈  ℝ )  | 
						
						
							| 21 | 
							
								
							 | 
							2re | 
							⊢ 2  ∈  ℝ  | 
						
						
							| 22 | 
							
								21
							 | 
							a1i | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  2  ∈  ℝ )  | 
						
						
							| 23 | 
							
								
							 | 
							nn0re | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ♯ ‘ 𝑃 )  ∈  ℝ )  | 
						
						
							| 24 | 
							
								
							 | 
							1le2 | 
							⊢ 1  ≤  2  | 
						
						
							| 25 | 
							
								24
							 | 
							a1i | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  1  ≤  2 )  | 
						
						
							| 26 | 
							
								20 22 23 25
							 | 
							lesub2dd | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ≤  ( ( ♯ ‘ 𝑃 )  −  1 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							eluz2 | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) )  ↔  ( ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ≤  ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  | 
						
						
							| 28 | 
							
								17 19 26 27
							 | 
							syl3anbrc | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							fzoss2 | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ( ℤ≥ ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) )  ⊆  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  | 
						
						
							| 30 | 
							
								28 29
							 | 
							syl | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) )  ⊆  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							sselda | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							fvexd | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } )  ∈  V )  | 
						
						
							| 33 | 
							
								1 13 31 32
							 | 
							fvmptd2 | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  𝐼  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  →  ( 𝐹 ‘ 𝐼 )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) ,  ( 𝑃 ‘ ( 𝐼  +  1 ) ) } ) )  |