Step |
Hyp |
Ref |
Expression |
1 |
|
clwlkclwwlklem2.f |
⊢ 𝐹 = ( 𝑥 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ↦ if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) ) |
2 |
|
breq1 |
⊢ ( 𝑥 = 𝐼 → ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) ↔ 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐼 → ( 𝑃 ‘ 𝑥 ) = ( 𝑃 ‘ 𝐼 ) ) |
4 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝐼 → ( 𝑃 ‘ ( 𝑥 + 1 ) ) = ( 𝑃 ‘ ( 𝐼 + 1 ) ) ) |
5 |
3 4
|
preq12d |
⊢ ( 𝑥 = 𝐼 → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) |
6 |
5
|
fveq2d |
⊢ ( 𝑥 = 𝐼 → ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |
7 |
3
|
preq1d |
⊢ ( 𝑥 = 𝐼 → { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ 0 ) } ) |
8 |
7
|
fveq2d |
⊢ ( 𝑥 = 𝐼 → ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ 0 ) } ) ) |
9 |
2 6 8
|
ifbieq12d |
⊢ ( 𝑥 = 𝐼 → if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) = if ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ 0 ) } ) ) ) |
10 |
|
elfzolt2 |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
11 |
10
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) ) |
12 |
11
|
iftrued |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → if ( 𝐼 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ 0 ) } ) ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |
13 |
9 12
|
sylan9eqr |
⊢ ( ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) ∧ 𝑥 = 𝐼 ) → if ( 𝑥 < ( ( ♯ ‘ 𝑃 ) − 2 ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ ( 𝑥 + 1 ) ) } ) , ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) , ( 𝑃 ‘ 0 ) } ) ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |
14 |
|
nn0z |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℤ ) |
15 |
|
2z |
⊢ 2 ∈ ℤ |
16 |
15
|
a1i |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 2 ∈ ℤ ) |
17 |
14 16
|
zsubcld |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ) |
18 |
|
peano2zm |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℤ → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℤ ) |
19 |
14 18
|
syl |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℤ ) |
20 |
|
1red |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 1 ∈ ℝ ) |
21 |
|
2re |
⊢ 2 ∈ ℝ |
22 |
21
|
a1i |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 2 ∈ ℝ ) |
23 |
|
nn0re |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ♯ ‘ 𝑃 ) ∈ ℝ ) |
24 |
|
1le2 |
⊢ 1 ≤ 2 |
25 |
24
|
a1i |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → 1 ≤ 2 ) |
26 |
20 22 23 25
|
lesub2dd |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 2 ) ≤ ( ( ♯ ‘ 𝑃 ) − 1 ) ) |
27 |
|
eluz2 |
⊢ ( ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ↔ ( ( ( ♯ ‘ 𝑃 ) − 2 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝑃 ) − 2 ) ≤ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
28 |
17 19 26 27
|
syl3anbrc |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) |
29 |
|
fzoss2 |
⊢ ( ( ( ♯ ‘ 𝑃 ) − 1 ) ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) → ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
30 |
28 29
|
syl |
⊢ ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ⊆ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
31 |
30
|
sselda |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 1 ) ) ) |
32 |
|
fvexd |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ∈ V ) |
33 |
1 13 31 32
|
fvmptd2 |
⊢ ( ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 ∧ 𝐼 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑃 ) − 2 ) ) ) → ( 𝐹 ‘ 𝐼 ) = ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝐼 ) , ( 𝑃 ‘ ( 𝐼 + 1 ) ) } ) ) |