| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							clwlkclwwlklem2.f | 
							⊢ 𝐹  =  ( 𝑥  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↦  if ( 𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							nn0z | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ♯ ‘ 𝑃 )  ∈  ℤ )  | 
						
						
							| 4 | 
							
								
							 | 
							2z | 
							⊢ 2  ∈  ℤ  | 
						
						
							| 5 | 
							
								3 4
							 | 
							jctir | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  ∈  ℤ  ∧  2  ∈  ℤ ) )  | 
						
						
							| 6 | 
							
								
							 | 
							zsubcl | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℤ  ∧  2  ∈  ℤ )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ )  | 
						
						
							| 9 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ )  | 
						
						
							| 10 | 
							
								2 9
							 | 
							eqeltrd | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  𝑥  ∈  ℤ )  | 
						
						
							| 11 | 
							
								10
							 | 
							ex | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  𝑥  ∈  ℤ ) )  | 
						
						
							| 12 | 
							
								
							 | 
							zre | 
							⊢ ( 𝑥  ∈  ℤ  →  𝑥  ∈  ℝ )  | 
						
						
							| 13 | 
							
								
							 | 
							nn0re | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ♯ ‘ 𝑃 )  ∈  ℝ )  | 
						
						
							| 14 | 
							
								
							 | 
							2re | 
							⊢ 2  ∈  ℝ  | 
						
						
							| 15 | 
							
								14
							 | 
							a1i | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  2  ∈  ℝ )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							resubcld | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℝ )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantr | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℝ )  | 
						
						
							| 18 | 
							
								
							 | 
							lttri3 | 
							⊢ ( ( 𝑥  ∈  ℝ  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℝ )  →  ( 𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ↔  ( ¬  𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 )  ∧  ¬  ( ( ♯ ‘ 𝑃 )  −  2 )  <  𝑥 ) ) )  | 
						
						
							| 19 | 
							
								12 17 18
							 | 
							syl2anr | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑥  ∈  ℤ )  →  ( 𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 )  ↔  ( ¬  𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 )  ∧  ¬  ( ( ♯ ‘ 𝑃 )  −  2 )  <  𝑥 ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simpl | 
							⊢ ( ( ¬  𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 )  ∧  ¬  ( ( ♯ ‘ 𝑃 )  −  2 )  <  𝑥 )  →  ¬  𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							biimtrdi | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑥  ∈  ℤ )  →  ( 𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ¬  𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							ex | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝑥  ∈  ℤ  →  ( 𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ¬  𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) )  | 
						
						
							| 23 | 
							
								11 22
							 | 
							syld | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ¬  𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							com13 | 
							⊢ ( 𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ¬  𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							pm2.43i | 
							⊢ ( 𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ¬  𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							impcom | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ¬  𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							iffalsed | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  if ( 𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } ) )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } ) )  | 
						
						
							| 28 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 )  →  ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantl | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( 𝑃 ‘ 𝑥 )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							preq1d | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } )  | 
						
						
							| 31 | 
							
								30
							 | 
							fveq2d | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } ) )  | 
						
						
							| 32 | 
							
								27 31
							 | 
							eqtrd | 
							⊢ ( ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  𝑥  =  ( ( ♯ ‘ 𝑃 )  −  2 ) )  →  if ( 𝑥  <  ( ( ♯ ‘ 𝑃 )  −  2 ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ ( 𝑥  +  1 ) ) } ) ,  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ 𝑥 ) ,  ( 𝑃 ‘ 0 ) } ) )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } ) )  | 
						
						
							| 33 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℤ  ∧  2  ∈  ℤ ) )  | 
						
						
							| 34 | 
							
								33 6
							 | 
							syl | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ )  | 
						
						
							| 35 | 
							
								13 15
							 | 
							subge0d | 
							⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( 0  ≤  ( ( ♯ ‘ 𝑃 )  −  2 )  ↔  2  ≤  ( ♯ ‘ 𝑃 ) ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							biimpar | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  0  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) )  | 
						
						
							| 37 | 
							
								
							 | 
							elnn0z | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ0  ↔  ( ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℤ  ∧  0  ≤  ( ( ♯ ‘ 𝑃 )  −  2 ) ) )  | 
						
						
							| 38 | 
							
								34 36 37
							 | 
							sylanbrc | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ0 )  | 
						
						
							| 39 | 
							
								
							 | 
							nn0ge2m1nn | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℕ )  | 
						
						
							| 40 | 
							
								
							 | 
							1red | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  1  ∈  ℝ )  | 
						
						
							| 41 | 
							
								14
							 | 
							a1i | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  2  ∈  ℝ )  | 
						
						
							| 42 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ♯ ‘ 𝑃 )  ∈  ℝ )  | 
						
						
							| 43 | 
							
								
							 | 
							1lt2 | 
							⊢ 1  <  2  | 
						
						
							| 44 | 
							
								43
							 | 
							a1i | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  1  <  2 )  | 
						
						
							| 45 | 
							
								40 41 42 44
							 | 
							ltsub2dd | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  <  ( ( ♯ ‘ 𝑃 )  −  1 ) )  | 
						
						
							| 46 | 
							
								
							 | 
							elfzo0 | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) )  ↔  ( ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ℕ0  ∧  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℕ  ∧  ( ( ♯ ‘ 𝑃 )  −  2 )  <  ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  | 
						
						
							| 47 | 
							
								38 39 45 46
							 | 
							syl3anbrc | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑃 )  −  1 ) ) )  | 
						
						
							| 48 | 
							
								
							 | 
							fvexd | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } )  ∈  V )  | 
						
						
							| 49 | 
							
								1 32 47 48
							 | 
							fvmptd2 | 
							⊢ ( ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( 𝐹 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) )  =  ( ◡ 𝐸 ‘ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) } ) )  |