Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 𝐸 : dom 𝐸 –1-1→ 𝑅 ) |
2 |
|
simp1 |
⊢ ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → 𝑓 ∈ Word dom 𝐸 ) |
3 |
2
|
adantr |
⊢ ( ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) → 𝑓 ∈ Word dom 𝐸 ) |
4 |
1 3
|
anim12i |
⊢ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) ) → ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑓 ∈ Word dom 𝐸 ) ) |
5 |
|
simp3 |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → 2 ≤ ( ♯ ‘ 𝑃 ) ) |
6 |
|
simpl2 |
⊢ ( ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) → 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ) |
7 |
5 6
|
anim12ci |
⊢ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) ) → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ) |
8 |
|
simp3 |
⊢ ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) |
9 |
8
|
anim1i |
⊢ ( ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) ) |
11 |
|
clwlkclwwlklem2 |
⊢ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑓 ∈ Word dom 𝐸 ) ∧ ( 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) |
12 |
4 7 10 11
|
syl3anc |
⊢ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) |
13 |
|
lencl |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
14 |
|
lencl |
⊢ ( 𝑓 ∈ Word dom 𝐸 → ( ♯ ‘ 𝑓 ) ∈ ℕ0 ) |
15 |
|
ffz0hash |
⊢ ( ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ) → ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) |
16 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) → ( ( ♯ ‘ 𝑃 ) − 1 ) = ( ( ( ♯ ‘ 𝑓 ) + 1 ) − 1 ) ) |
17 |
16
|
oveq1d |
⊢ ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) → ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) = ( ( ( ( ♯ ‘ 𝑓 ) + 1 ) − 1 ) − 0 ) ) |
18 |
|
nn0cn |
⊢ ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → ( ♯ ‘ 𝑓 ) ∈ ℂ ) |
19 |
|
peano2cn |
⊢ ( ( ♯ ‘ 𝑓 ) ∈ ℂ → ( ( ♯ ‘ 𝑓 ) + 1 ) ∈ ℂ ) |
20 |
|
peano2cnm |
⊢ ( ( ( ♯ ‘ 𝑓 ) + 1 ) ∈ ℂ → ( ( ( ♯ ‘ 𝑓 ) + 1 ) − 1 ) ∈ ℂ ) |
21 |
18 19 20
|
3syl |
⊢ ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝑓 ) + 1 ) − 1 ) ∈ ℂ ) |
22 |
21
|
subid1d |
⊢ ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → ( ( ( ( ♯ ‘ 𝑓 ) + 1 ) − 1 ) − 0 ) = ( ( ( ♯ ‘ 𝑓 ) + 1 ) − 1 ) ) |
23 |
|
1cnd |
⊢ ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → 1 ∈ ℂ ) |
24 |
18 23
|
pncand |
⊢ ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝑓 ) + 1 ) − 1 ) = ( ♯ ‘ 𝑓 ) ) |
25 |
22 24
|
eqtrd |
⊢ ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → ( ( ( ( ♯ ‘ 𝑓 ) + 1 ) − 1 ) − 0 ) = ( ♯ ‘ 𝑓 ) ) |
26 |
25
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( ( ( ( ♯ ‘ 𝑓 ) + 1 ) − 1 ) − 0 ) = ( ♯ ‘ 𝑓 ) ) |
27 |
17 26
|
sylan9eqr |
⊢ ( ( ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) → ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) = ( ♯ ‘ 𝑓 ) ) |
28 |
27
|
oveq1d |
⊢ ( ( ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) → ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) = ( ( ♯ ‘ 𝑓 ) − 1 ) ) |
29 |
28
|
oveq2d |
⊢ ( ( ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) → ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) ) |
30 |
29
|
raleqdv |
⊢ ( ( ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ) ) |
31 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) → ( ( ♯ ‘ 𝑃 ) − 2 ) = ( ( ( ♯ ‘ 𝑓 ) + 1 ) − 2 ) ) |
32 |
|
2cnd |
⊢ ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → 2 ∈ ℂ ) |
33 |
18 32 23
|
subsub3d |
⊢ ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑓 ) − ( 2 − 1 ) ) = ( ( ( ♯ ‘ 𝑓 ) + 1 ) − 2 ) ) |
34 |
|
2m1e1 |
⊢ ( 2 − 1 ) = 1 |
35 |
34
|
a1i |
⊢ ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → ( 2 − 1 ) = 1 ) |
36 |
35
|
oveq2d |
⊢ ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑓 ) − ( 2 − 1 ) ) = ( ( ♯ ‘ 𝑓 ) − 1 ) ) |
37 |
33 36
|
eqtr3d |
⊢ ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → ( ( ( ♯ ‘ 𝑓 ) + 1 ) − 2 ) = ( ( ♯ ‘ 𝑓 ) − 1 ) ) |
38 |
37
|
adantr |
⊢ ( ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( ( ( ♯ ‘ 𝑓 ) + 1 ) − 2 ) = ( ( ♯ ‘ 𝑓 ) − 1 ) ) |
39 |
31 38
|
sylan9eqr |
⊢ ( ( ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) → ( ( ♯ ‘ 𝑃 ) − 2 ) = ( ( ♯ ‘ 𝑓 ) − 1 ) ) |
40 |
39
|
fveq2d |
⊢ ( ( ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) → ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) = ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) ) |
41 |
40
|
preq1d |
⊢ ( ( ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) → { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } = { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ) |
42 |
41
|
eleq1d |
⊢ ( ( ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) → ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ↔ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) |
43 |
30 42
|
anbi12d |
⊢ ( ( ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) |
44 |
43
|
anbi2d |
⊢ ( ( ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ↔ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) |
45 |
|
3anass |
⊢ ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ↔ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) |
46 |
44 45
|
bitr4di |
⊢ ( ( ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) ∧ ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) ) → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ↔ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) |
47 |
46
|
expcom |
⊢ ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) → ( ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ↔ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) |
48 |
47
|
expd |
⊢ ( ( ♯ ‘ 𝑃 ) = ( ( ♯ ‘ 𝑓 ) + 1 ) → ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ↔ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) |
49 |
15 48
|
syl |
⊢ ( ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ) → ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ↔ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) |
50 |
49
|
ex |
⊢ ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 → ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ↔ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) |
51 |
50
|
com23 |
⊢ ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑓 ) ∈ ℕ0 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ↔ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) ) |
52 |
14 14 51
|
sylc |
⊢ ( 𝑓 ∈ Word dom 𝐸 → ( 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ↔ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) ) |
53 |
52
|
imp |
⊢ ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ↔ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) |
54 |
53
|
3adant3 |
⊢ ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ↔ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) |
55 |
54
|
adantr |
⊢ ( ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) → ( ( ♯ ‘ 𝑃 ) ∈ ℕ0 → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ↔ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) |
56 |
13 55
|
syl5com |
⊢ ( 𝑃 ∈ Word 𝑉 → ( ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ↔ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) |
57 |
56
|
3ad2ant2 |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ↔ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) |
58 |
57
|
imp |
⊢ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) ) → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ↔ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑓 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 ) − 1 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) |
59 |
12 58
|
mpbird |
⊢ ( ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) ∧ ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) |
60 |
59
|
ex |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) |
61 |
60
|
exlimdv |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ∃ 𝑓 ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) → ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) |
62 |
|
clwlkclwwlklem1 |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) → ∃ 𝑓 ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) ) ) |
63 |
61 62
|
impbid |
⊢ ( ( 𝐸 : dom 𝐸 –1-1→ 𝑅 ∧ 𝑃 ∈ Word 𝑉 ∧ 2 ≤ ( ♯ ‘ 𝑃 ) ) → ( ∃ 𝑓 ( ( 𝑓 ∈ Word dom 𝐸 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) ) = { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) ↔ ( ( lastS ‘ 𝑃 ) = ( 𝑃 ‘ 0 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 ) − 1 ) − 0 ) − 1 ) ) { ( 𝑃 ‘ 𝑖 ) , ( 𝑃 ‘ ( 𝑖 + 1 ) ) } ∈ ran 𝐸 ∧ { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 ) − 2 ) ) , ( 𝑃 ‘ 0 ) } ∈ ran 𝐸 ) ) ) ) |