| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  𝐸 : dom  𝐸 –1-1→ 𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  →  𝑓  ∈  Word  dom  𝐸 )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  →  𝑓  ∈  Word  dom  𝐸 )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							anim12i | 
							⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) )  →  ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑓  ∈  Word  dom  𝐸 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  2  ≤  ( ♯ ‘ 𝑃 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							simpl2 | 
							⊢ ( ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  →  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							anim12ci | 
							⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) )  →  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  | 
						
						
							| 9 | 
							
								8
							 | 
							anim1i | 
							⊢ ( ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantl | 
							⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							clwlkclwwlklem2 | 
							⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑓  ∈  Word  dom  𝐸 )  ∧  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 12 | 
							
								4 7 10 11
							 | 
							syl3anc | 
							⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							lencl | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  | 
						
						
							| 14 | 
							
								
							 | 
							lencl | 
							⊢ ( 𝑓  ∈  Word  dom  𝐸  →  ( ♯ ‘ 𝑓 )  ∈  ℕ0 )  | 
						
						
							| 15 | 
							
								
							 | 
							ffz0hash | 
							⊢ ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 )  →  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							oveq1 | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq1d | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  →  ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  =  ( ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 )  −  0 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							nn0cn | 
							⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ♯ ‘ 𝑓 )  ∈  ℂ )  | 
						
						
							| 19 | 
							
								
							 | 
							peano2cn | 
							⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℂ  →  ( ( ♯ ‘ 𝑓 )  +  1 )  ∈  ℂ )  | 
						
						
							| 20 | 
							
								
							 | 
							peano2cnm | 
							⊢ ( ( ( ♯ ‘ 𝑓 )  +  1 )  ∈  ℂ  →  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 )  ∈  ℂ )  | 
						
						
							| 21 | 
							
								18 19 20
							 | 
							3syl | 
							⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 )  ∈  ℂ )  | 
						
						
							| 22 | 
							
								21
							 | 
							subid1d | 
							⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 )  −  0 )  =  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 ) )  | 
						
						
							| 23 | 
							
								
							 | 
							1cnd | 
							⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  1  ∈  ℂ )  | 
						
						
							| 24 | 
							
								18 23
							 | 
							pncand | 
							⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 )  =  ( ♯ ‘ 𝑓 ) )  | 
						
						
							| 25 | 
							
								22 24
							 | 
							eqtrd | 
							⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 )  −  0 )  =  ( ♯ ‘ 𝑓 ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							adantr | 
							⊢ ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  1 )  −  0 )  =  ( ♯ ‘ 𝑓 ) )  | 
						
						
							| 27 | 
							
								17 26
							 | 
							sylan9eqr | 
							⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  =  ( ♯ ‘ 𝑓 ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							oveq1d | 
							⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 )  =  ( ( ♯ ‘ 𝑓 )  −  1 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							oveq2d | 
							⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) )  =  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							raleqdv | 
							⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ↔  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 31 | 
							
								
							 | 
							oveq1 | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  =  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  2 ) )  | 
						
						
							| 32 | 
							
								
							 | 
							2cnd | 
							⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  2  ∈  ℂ )  | 
						
						
							| 33 | 
							
								18 32 23
							 | 
							subsub3d | 
							⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑓 )  −  ( 2  −  1 ) )  =  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  2 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							2m1e1 | 
							⊢ ( 2  −  1 )  =  1  | 
						
						
							| 35 | 
							
								34
							 | 
							a1i | 
							⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( 2  −  1 )  =  1 )  | 
						
						
							| 36 | 
							
								35
							 | 
							oveq2d | 
							⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑓 )  −  ( 2  −  1 ) )  =  ( ( ♯ ‘ 𝑓 )  −  1 ) )  | 
						
						
							| 37 | 
							
								33 36
							 | 
							eqtr3d | 
							⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  2 )  =  ( ( ♯ ‘ 𝑓 )  −  1 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							adantr | 
							⊢ ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( ( ( ♯ ‘ 𝑓 )  +  1 )  −  2 )  =  ( ( ♯ ‘ 𝑓 )  −  1 ) )  | 
						
						
							| 39 | 
							
								31 38
							 | 
							sylan9eqr | 
							⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( ( ♯ ‘ 𝑃 )  −  2 )  =  ( ( ♯ ‘ 𝑓 )  −  1 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							fveq2d | 
							⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) )  =  ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							preq1d | 
							⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  =  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) } )  | 
						
						
							| 42 | 
							
								41
							 | 
							eleq1d | 
							⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸  ↔  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  | 
						
						
							| 43 | 
							
								30 42
							 | 
							anbi12d | 
							⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 )  ↔  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							anbi2d | 
							⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) )  | 
						
						
							| 45 | 
							
								
							 | 
							3anass | 
							⊢ ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) )  | 
						
						
							| 46 | 
							
								44 45
							 | 
							bitr4di | 
							⊢ ( ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  ∧  ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 ) )  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							expcom | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  →  ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ0 )  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							expd | 
							⊢ ( ( ♯ ‘ 𝑃 )  =  ( ( ♯ ‘ 𝑓 )  +  1 )  →  ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) )  | 
						
						
							| 49 | 
							
								15 48
							 | 
							syl | 
							⊢ ( ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 )  →  ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							ex | 
							⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  →  ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							com23 | 
							⊢ ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑓 )  ∈  ℕ0  →  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) ) )  | 
						
						
							| 52 | 
							
								14 14 51
							 | 
							sylc | 
							⊢ ( 𝑓  ∈  Word  dom  𝐸  →  ( 𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							imp | 
							⊢ ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉 )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							3adant3 | 
							⊢ ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							adantr | 
							⊢ ( ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) )  | 
						
						
							| 56 | 
							
								13 55
							 | 
							syl5com | 
							⊢ ( 𝑃  ∈  Word  𝑉  →  ( ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							imp | 
							⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) )  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑓 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑓 )  −  1 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) )  | 
						
						
							| 59 | 
							
								12 58
							 | 
							mpbird | 
							⊢ ( ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  ∧  ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							ex | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							exlimdv | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ∃ 𝑓 ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  →  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) )  | 
						
						
							| 62 | 
							
								
							 | 
							clwlkclwwlklem1 | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) )  →  ∃ 𝑓 ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) ) ) )  | 
						
						
							| 63 | 
							
								61 62
							 | 
							impbid | 
							⊢ ( ( 𝐸 : dom  𝐸 –1-1→ 𝑅  ∧  𝑃  ∈  Word  𝑉  ∧  2  ≤  ( ♯ ‘ 𝑃 ) )  →  ( ∃ 𝑓 ( ( 𝑓  ∈  Word  dom  𝐸  ∧  𝑃 : ( 0 ... ( ♯ ‘ 𝑓 ) ) ⟶ 𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑓 ) ) ( 𝐸 ‘ ( 𝑓 ‘ 𝑖 ) )  =  { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) } )  ∧  ( 𝑃 ‘ 0 )  =  ( 𝑃 ‘ ( ♯ ‘ 𝑓 ) ) )  ↔  ( ( lastS ‘ 𝑃 )  =  ( 𝑃 ‘ 0 )  ∧  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ( ( ♯ ‘ 𝑃 )  −  1 )  −  0 )  −  1 ) ) { ( 𝑃 ‘ 𝑖 ) ,  ( 𝑃 ‘ ( 𝑖  +  1 ) ) }  ∈  ran  𝐸  ∧  { ( 𝑃 ‘ ( ( ♯ ‘ 𝑃 )  −  2 ) ) ,  ( 𝑃 ‘ 0 ) }  ∈  ran  𝐸 ) ) ) )  |