Step |
Hyp |
Ref |
Expression |
1 |
|
isclwlke.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isclwlke.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
clwlkcomp.1 |
⊢ 𝐹 = ( 1st ‘ 𝑊 ) |
4 |
|
clwlkcomp.2 |
⊢ 𝑃 = ( 2nd ‘ 𝑊 ) |
5 |
3
|
eqcomi |
⊢ ( 1st ‘ 𝑊 ) = 𝐹 |
6 |
4
|
eqcomi |
⊢ ( 2nd ‘ 𝑊 ) = 𝑃 |
7 |
5 6
|
pm3.2i |
⊢ ( ( 1st ‘ 𝑊 ) = 𝐹 ∧ ( 2nd ‘ 𝑊 ) = 𝑃 ) |
8 |
|
eqop |
⊢ ( 𝑊 ∈ ( 𝑆 × 𝑇 ) → ( 𝑊 = 〈 𝐹 , 𝑃 〉 ↔ ( ( 1st ‘ 𝑊 ) = 𝐹 ∧ ( 2nd ‘ 𝑊 ) = 𝑃 ) ) ) |
9 |
7 8
|
mpbiri |
⊢ ( 𝑊 ∈ ( 𝑆 × 𝑇 ) → 𝑊 = 〈 𝐹 , 𝑃 〉 ) |
10 |
9
|
eleq1d |
⊢ ( 𝑊 ∈ ( 𝑆 × 𝑇 ) → ( 𝑊 ∈ ( ClWalks ‘ 𝐺 ) ↔ 〈 𝐹 , 𝑃 〉 ∈ ( ClWalks ‘ 𝐺 ) ) ) |
11 |
|
df-br |
⊢ ( 𝐹 ( ClWalks ‘ 𝐺 ) 𝑃 ↔ 〈 𝐹 , 𝑃 〉 ∈ ( ClWalks ‘ 𝐺 ) ) |
12 |
10 11
|
bitr4di |
⊢ ( 𝑊 ∈ ( 𝑆 × 𝑇 ) → ( 𝑊 ∈ ( ClWalks ‘ 𝐺 ) ↔ 𝐹 ( ClWalks ‘ 𝐺 ) 𝑃 ) ) |
13 |
1 2
|
isclwlke |
⊢ ( 𝐺 ∈ 𝑋 → ( 𝐹 ( ClWalks ‘ 𝐺 ) 𝑃 ↔ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
14 |
12 13
|
sylan9bbr |
⊢ ( ( 𝐺 ∈ 𝑋 ∧ 𝑊 ∈ ( 𝑆 × 𝑇 ) ) → ( 𝑊 ∈ ( ClWalks ‘ 𝐺 ) ↔ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |