Step |
Hyp |
Ref |
Expression |
1 |
|
isclwlke.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
isclwlke.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
3 |
|
clwlkcomp.1 |
⊢ 𝐹 = ( 1st ‘ 𝑊 ) |
4 |
|
clwlkcomp.2 |
⊢ 𝑃 = ( 2nd ‘ 𝑊 ) |
5 |
|
elfvex |
⊢ ( 𝑊 ∈ ( ClWalks ‘ 𝐺 ) → 𝐺 ∈ V ) |
6 |
|
clwlks |
⊢ ( ClWalks ‘ 𝐺 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑔 ∧ ( 𝑔 ‘ 0 ) = ( 𝑔 ‘ ( ♯ ‘ 𝑓 ) ) ) } |
7 |
6
|
a1i |
⊢ ( 𝐺 ∈ V → ( ClWalks ‘ 𝐺 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑔 ∧ ( 𝑔 ‘ 0 ) = ( 𝑔 ‘ ( ♯ ‘ 𝑓 ) ) ) } ) |
8 |
7
|
eleq2d |
⊢ ( 𝐺 ∈ V → ( 𝑊 ∈ ( ClWalks ‘ 𝐺 ) ↔ 𝑊 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑔 ∧ ( 𝑔 ‘ 0 ) = ( 𝑔 ‘ ( ♯ ‘ 𝑓 ) ) ) } ) ) |
9 |
|
elopaelxp |
⊢ ( 𝑊 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑔 ∧ ( 𝑔 ‘ 0 ) = ( 𝑔 ‘ ( ♯ ‘ 𝑓 ) ) ) } → 𝑊 ∈ ( V × V ) ) |
10 |
9
|
anim2i |
⊢ ( ( 𝐺 ∈ V ∧ 𝑊 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑔 ∧ ( 𝑔 ‘ 0 ) = ( 𝑔 ‘ ( ♯ ‘ 𝑓 ) ) ) } ) → ( 𝐺 ∈ V ∧ 𝑊 ∈ ( V × V ) ) ) |
11 |
10
|
ex |
⊢ ( 𝐺 ∈ V → ( 𝑊 ∈ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 ( Walks ‘ 𝐺 ) 𝑔 ∧ ( 𝑔 ‘ 0 ) = ( 𝑔 ‘ ( ♯ ‘ 𝑓 ) ) ) } → ( 𝐺 ∈ V ∧ 𝑊 ∈ ( V × V ) ) ) ) |
12 |
8 11
|
sylbid |
⊢ ( 𝐺 ∈ V → ( 𝑊 ∈ ( ClWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑊 ∈ ( V × V ) ) ) ) |
13 |
5 12
|
mpcom |
⊢ ( 𝑊 ∈ ( ClWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑊 ∈ ( V × V ) ) ) |
14 |
1 2 3 4
|
clwlkcomp |
⊢ ( ( 𝐺 ∈ V ∧ 𝑊 ∈ ( V × V ) ) → ( 𝑊 ∈ ( ClWalks ‘ 𝐺 ) ↔ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
15 |
13 14
|
syl |
⊢ ( 𝑊 ∈ ( ClWalks ‘ 𝐺 ) → ( 𝑊 ∈ ( ClWalks ‘ 𝐺 ) ↔ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) ) |
16 |
15
|
ibi |
⊢ ( 𝑊 ∈ ( ClWalks ‘ 𝐺 ) → ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) ∧ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ ( ♯ ‘ 𝐹 ) ) ) ) ) |