Step |
Hyp |
Ref |
Expression |
1 |
|
clwlknon2num.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
rusgrusgr |
⊢ ( 𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USGraph ) |
3 |
|
usgruspgr |
⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ USPGraph ) |
4 |
2 3
|
syl |
⊢ ( 𝐺 RegUSGraph 𝐾 → 𝐺 ∈ USPGraph ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝐺 ∈ USPGraph ) |
6 |
1
|
eleq2i |
⊢ ( 𝑋 ∈ 𝑉 ↔ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
7 |
6
|
biimpi |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
8 |
7
|
3ad2ant3 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
9 |
|
2nn |
⊢ 2 ∈ ℕ |
10 |
9
|
a1i |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 2 ∈ ℕ ) |
11 |
|
clwwlknonclwlknonen |
⊢ ( ( 𝐺 ∈ USPGraph ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 2 ∈ ℕ ) → { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 2 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } ≈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) |
12 |
5 8 10 11
|
syl3anc |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 2 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } ≈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) |
13 |
2
|
anim2i |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( 𝑉 ∈ Fin ∧ 𝐺 ∈ USGraph ) ) |
14 |
13
|
ancomd |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
15 |
1
|
isfusgr |
⊢ ( 𝐺 ∈ FinUSGraph ↔ ( 𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin ) ) |
16 |
14 15
|
sylibr |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ) → 𝐺 ∈ FinUSGraph ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 𝐺 ∈ FinUSGraph ) |
18 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
19 |
18
|
a1i |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → 2 ∈ ℕ0 ) |
20 |
|
wlksnfi |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 2 ∈ ℕ0 ) → { 𝑤 ∈ ( Walks ‘ 𝐺 ) ∣ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 2 } ∈ Fin ) |
21 |
17 19 20
|
syl2anc |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → { 𝑤 ∈ ( Walks ‘ 𝐺 ) ∣ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 2 } ∈ Fin ) |
22 |
|
clwlkswks |
⊢ ( ClWalks ‘ 𝐺 ) ⊆ ( Walks ‘ 𝐺 ) |
23 |
22
|
a1i |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( ClWalks ‘ 𝐺 ) ⊆ ( Walks ‘ 𝐺 ) ) |
24 |
|
simp2l |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) ∧ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 2 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) ∧ 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ) → ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 2 ) |
25 |
23 24
|
rabssrabd |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 2 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } ⊆ { 𝑤 ∈ ( Walks ‘ 𝐺 ) ∣ ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 2 } ) |
26 |
21 25
|
ssfid |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 2 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } ∈ Fin ) |
27 |
1
|
clwwlknonfin |
⊢ ( 𝑉 ∈ Fin → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ∈ Fin ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ∈ Fin ) |
29 |
|
hashen |
⊢ ( ( { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 2 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } ∈ Fin ∧ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ∈ Fin ) → ( ( ♯ ‘ { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 2 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } ) = ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) ↔ { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 2 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } ≈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) ) |
30 |
26 28 29
|
syl2anc |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( ( ♯ ‘ { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 2 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } ) = ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) ↔ { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 2 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } ≈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) ) |
31 |
12 30
|
mpbird |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( ♯ ‘ { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 2 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } ) = ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) ) |
32 |
7
|
anim2i |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) ) |
33 |
32
|
3adant1 |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) ) |
34 |
|
clwwlknon2num |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) = 𝐾 ) |
35 |
33 34
|
syl |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) = 𝐾 ) |
36 |
31 35
|
eqtrd |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾 ∧ 𝑋 ∈ 𝑉 ) → ( ♯ ‘ { 𝑤 ∈ ( ClWalks ‘ 𝐺 ) ∣ ( ( ♯ ‘ ( 1st ‘ 𝑤 ) ) = 2 ∧ ( ( 2nd ‘ 𝑤 ) ‘ 0 ) = 𝑋 ) } ) = 𝐾 ) |